Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biometeorol ; 67(7): 1155-1167, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37199822

ABSTRACT

Northeast China (NEC) is one of the main soybean-producing areas among the northern-latitude regions. Climate warming leads to frequent extreme disasters, and the threat of chilling damage to soybean production in NEC cannot be ignored. The study aimed to construct a dynamic disaster identification index based on the static evaluation of soybean after the disaster, taking into account the process of soybean chilling damage and using the historical disaster records to realize the dynamic prediction and analysis before the disaster. Taking soybean in NEC as the research object, chilling damage indicators of soybeans in NEC were constructed by dividing the mature regions, using daily temperature anomaly and negative temperature anomaly day data with the comprehensive consideration of the chilling damage intensity, duration, and temperature recovery. The results showed that the comprehensive indicators determined by the cumulative value of temperature anomaly-the cumulative days of negative temperature anomaly had better applicability in NEC than the single factor indicator. The indicator results were basically consistent with the historical disaster records, and the accuracy rate of the indicator verification reached 90.9%. Based on the analysis of the constructed indicators, the frequency of delayed chilling damage in NEC showed a fluctuating downward trend from 1961 to 2020. The station ratio of delayed chilling damage in NEC showed a fluctuating downward trend, with the most obvious downward trend occurring for severe damage, followed by moderate damage, and the least obvious trend observed for light damage. The scope of chilling damage gradually narrowed, with the frequency increasing from southeast to northwest. The high-risk areas of chilling damage were concentrated mainly in the northern part of Heilongjiang Province and the East Four Leagues. The risk of chilling damage in most areas of Jilin Province and Liaoning Province was relatively low. The study results provide basic support for the risk research of soybean chilling damage and for ensuring disaster monitoring and early warnings, and the risk assessment based on the chilling damage process has positive significance for adjusting agricultural structure and improving the distribution of soybean varieties.


Subject(s)
Disasters , Glycine max , Temperature , Climate , China
2.
Front Genet ; 13: 1060529, 2022.
Article in English | MEDLINE | ID: mdl-36518213

ABSTRACT

Drought is the most common environmental stress and has had dramatic impacts on soybean (Glycine max L.) growth and yield worldwide. Therefore, to investigate the response mechanism underlying soybean resistance to drought stress, the drought-sensitive cultivar "Liaodou 15" was exposed to 7 (mild drought stress, LD), 17 (moderate drought stress, MD) and 27 (severe drought stress, SD) days of drought stress at the flowering stage followed by rehydration until harvest. A total of 2214, 3684 and 2985 differentially expressed genes (DEGs) in LD/CK1, MD/CK2, and SD/CK3, respectively, were identified by RNA-seq. Weighted gene co-expression network analysis (WGCNA) revealed the drought-response TFs such as WRKY (Glyma.15G021900, Glyma.15G006800), MYB (Glyma.15G190100, Glyma.15G237900), and bZIP (Glyma.15G114800), which may be regulated soybean drought resistance. Second, Glyma.08G176300 (NCED1), Glyma.03G222600 (SDR), Glyma.02G048400 (F3H), Glyma.14G221200 (CAD), Glyma.14G205200 (C4H), Glyma.19G105100 (CHS), Glyma.07G266200 (VTC) and Glyma.15G251500 (GST), which are involved in ABA and flavonoid biosynthesis and ascorbic acid and glutathione metabolism, were identified, suggesting that these metabolic pathways play key roles in the soybean response to drought. Finally, the soybean yield after rehydration was reduced by 50% under severe drought stress. Collectively, our study deepens the understanding of soybean drought resistance mechanisms and provides a theoretical basis for the soybean drought resistance molecular breeding and effectively adjusts water-saving irrigation for soybean under field production.

3.
Front Microbiol ; 13: 1000033, 2022.
Article in English | MEDLINE | ID: mdl-36419423

ABSTRACT

Endophytic nitrogen-fixing bacteria are versatile and widely distributed in plants. Numerous strains of endophytic nitrogen-fixing bacteria are used as biofertilizers to minimize the utilization of chemical fertilizers, improve nutrient use efficiency, increase crop productivity, and reduce environmental pollution. However, the mechanism underlying the interaction between nitrogen-fixing bacteria and plants is still unclear. So, the present study was planned to assess the effects of endophytic nitrogen-fixing bacteria on sugarcane by analyzing the changes in physiological and biochemical activities. In the current study, Klebsiella variicola DX120E, an endophytic nitrogen-fixing bacterium, was inoculated on sugarcane varieties B8 and ROC22 to evaluate the effects on nitrogen and carbon metabolism-related enzymatic activity and biomass. Results showed that DX120E inoculation improved the enzymatic activities related to gluconeogenesis and nitrogen metabolism increased the sugarcane plant's height, cane juice Brix, biomass, chlorophyll, and soluble sugar content in sugarcane. Metabolomics analysis revealed that the metabolome modules were highly enriched in carbon and nitrogen metabolic pathways of strain-affected sugarcane than uninoculated control. The identified carbohydrates were associated with the glycolysis or gluconeogenesis and tricarboxylic acid (TCA) cycle in plants. Metabolomic profiling in the present investigation showed that carbohydrate metabolism is coordinated with nitrogen metabolism to provide carbon skeletons and energy to amino acid synthesis, and amino acid degradation results in several metabolites used by the citric acid cycle as an energy source. Moreover, differentially expressed metabolites of non-proteinogenic amino acids have a further complementary role to the action of endophytic nitrogen-fixing bacteria. Meanwhile, a significant difference in metabolites and metabolic pathways present in stems and leaves of B8 and ROC22 varieties was found. This study discovered the potential benefits of DX120E in sugarcane and suggested candidate regulatory elements to enhance interactions between nitrogen-fixing microbes and sugarcane.

SELECTION OF CITATIONS
SEARCH DETAIL
...