Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 11(1): 214, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35798696

ABSTRACT

Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss, in order to provide more degrees of freedom in manipulating propagating light. Here, we report a new method for femtosecond laser writing of optical-fiber-compatible glass waveguides, namely spherical phase-induced multicore waveguide (SPIM-WG), which addresses this challenging task with three-dimensional on-chip light control. Fabricating in the heating regime with high scanning speed, precise deformation of cross-sections is still achievable along the waveguide, with shapes and sizes finely controllable of high resolution in both horizontal and vertical transversal directions. We observed that these waveguides have high refractive index contrast of 0.017, low propagation loss of 0.14 dB/cm, and very low coupling loss of 0.19 dB coupled from a single-mode fiber. SPIM-WG devices were easily fabricated that were able to perform on-chip beam rotation through varying angles, or manipulate the polarization state of propagating light for target wavelengths. We also demonstrated SPIM-WG mode converters that provide arbitrary adiabatic mode conversion with high efficiency between symmetric and asymmetric nonuniform modes; examples include circular, elliptical modes, and asymmetric modes from ppKTP (periodically poled potassium titanyl phosphate) waveguides which are generally applied in frequency conversion and quantum light sources. Created inside optical glass, these waveguides and devices have the capability to operate across ultra-broad bands from visible to infrared wavelengths. The compatibility with optical fiber also paves the way toward packaged photonic integrated circuitry, which usually needs input and output fiber connections.

2.
Light Sci Appl ; 7: 17117, 2018.
Article in English | MEDLINE | ID: mdl-30839626

ABSTRACT

The spectral dispersion of ultrashort pulses allows the simultaneous focusing of light in both space and time, which creates so-called spatiotemporal foci. Such space-time coupling may be combined with the existing holographic techniques to give a further dimension of control when generating focal light fields. In the present study, it is shown that a phase-only hologram placed in the pupil plane of an objective and illuminated by a spatially chirped ultrashort pulse can be used to generate three-dimensional arrays of spatio-temporally focused spots. By exploiting the pulse front tilt generated at focus when applying simultaneous spatial and temporal focusing (SSTF), it is possible to overlap neighboring foci in time to create a smooth intensity distribution. The resulting light field displays a high level of axial confinement, with experimental demonstrations given through two-photon microscopy and the non-linear laser fabrication of glass.

3.
Opt Lett ; 40(21): 4999-5002, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26512503

ABSTRACT

Adaptive optics has been extensively studied for the correction of phase front aberrations in optical systems. In systems using ultrafast lasers, distortions can also exist in the pulse front (contour of constant intensity in space and time), but until now their correction has been mostly unexplored due to technological limitations. In this Letter, we apply newly developed pulse front adaptive optics, for the first time to our knowledge, to practical compensation of a two-photon fluorescence microscope. With adaptive correction of the system-induced pulse front distortion, improvements beyond conventional phase correction are demonstrated.

4.
Opt Express ; 23(15): 19348-57, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26367595

ABSTRACT

Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.

5.
J Opt Soc Am A Opt Image Sci Vis ; 31(4): 765-72, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24695138

ABSTRACT

Spatiotemporal focusing, or simultaneous spatial and temporal focusing (SSTF), has already been adopted for various applications in microscopy, photoactivation for biological studies, and laser fabrication. We investigate the effects of aberrations on focus formation in SSTF, in particular, the effects of phase aberrations related to low-order Zernike modes and a refractive index mismatch between the immersion medium and sample. By considering a line focus, we are able to draw direct comparison between the performance of SSTF and conventional spatial focusing (SF). Wide-field SSTF is also investigated and is found to be much more robust to aberrations than either line SSTF or SF. These results show the sensitivity of certain focusing methods to specific aberrations, and can inform on the necessity and benefit of aberration correction.


Subject(s)
Lasers , Optical Phenomena , Spatio-Temporal Analysis
6.
Appl Opt ; 51(30): 7276-85, 2012 Oct 20.
Article in English | MEDLINE | ID: mdl-23089782

ABSTRACT

Dielectric-coated metallic hollow waveguides (DMHW) are drawing considerable attention for their application in terahertz (THz) waveguiding. This paper theoretically analyzes the multilayer structure to reduce the transmission and bending loss of DMHW. The efficiency of THz multilayer DMHW depends on a proper selection of dielectric materials and geometrical parameters. The low-loss properties are demonstrated by studying the multilayer gold waveguides with a stack of polypropylene (PP) and Si-doped polypropylene (PP(Si)). Comparisons are made with single-layer Au/PP and Au-only waveguides. The effect of dielectric absorption is discussed in detail. It is found that low index dielectric causes more additional loss than that of high index dielectric layers. Several design considerations for the THz multilayer DMHW are pointed out by studying the effects of multilayer structure parameters with a stack of polyethylene (PE) and TiO(2)-doped polyethylene (PE(TiO2)). We conclude that the inner radius of the waveguide and the refractive indices of the dielectrics tend to be larger in order to reduce the influence of material absorption. An optimal value exists for the total number of layers when the dielectrics are absorptive. The absorption tolerances are pointed out to guarantee a smaller loss for multilayer DMHW than that of metal-only waveguide. Finally, a fabrication method for THz multilayer DMHW Ag/PE/PE(TiO2) is proposed based on co-rolling technique.

7.
Opt Lett ; 36(17): 3461-3, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21886244

ABSTRACT

We report the optimal design for hollow fiber inner-coated with metallic and multidielectric layers by using ray-optics theory. Transmission characteristics of the multilayer hollow fiber are more dependent on the film surface roughness in the IR region. Comparisons of fibers with smooth and rough films are made and discussed in detail. The optimal design for film thickness, inner radius, and the number of layers and refractive indices is presented. The calculation results are important for structure design, material selection, and fabrication when considering imperfections in film-coating techniques. Multilayer fibers are fabricated based on the calculation and experimental results agree with the theoretical ones.

8.
Opt Express ; 19(25): 24967-79, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22273890

ABSTRACT

Transmission characteristics at terahertz (THz) frequencies are numerically analyzed for elliptical dielectric-coated metallic hollow fiber (DMHF). Attenuation constants, group velocity, modal birefringence, and modal power fraction in the air core are presented. Optimization of the fiber geometry is investigated to reduce the attenuation and to increase the birefringence simultaneously. Modal birefringence of 3.3 × 10 -2 and attenuation of 2.4 dB/m are expected. It is found that a desirable ellipticity of the air core is around 3. And both the modal birefringence and the attenuation constant are inversely proportional to the cube of the core size. Multiple dielectric layers significantly reduce the attenuation and meanwhile have little influence on the modal birefringence.


Subject(s)
Computer-Aided Design , Fiber Optic Technology/instrumentation , Models, Theoretical , Refractometry/instrumentation , Birefringence , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Porosity , Scattering, Radiation , Terahertz Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...