Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2303, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491132

ABSTRACT

About one third of vascular plants develop glandular trichomes, which produce defensive compounds that repel herbivores and act as a natural biofactory for important pharmaceuticals such as artemisinin and cannabinoids. However, only a few regulators of glandular structures have been characterized so far. Here we have identified two closely-related MYB-like genes that redundantly inhibit the formation of glandular cells in tomatoes, and they are named as GLAND CELL REPRESSOR (GCR) 1 and 2. The GCR genes highly express in the apical cells of tomato trichomes, with expression gradually diminishing as the cells transition into glands. The spatiotemporal expression of GCR genes is coordinated by a two-step inhibition process mediated by SlTOE1B and GCRs. Furthermore, we demonstrate that the GCR genes act by suppressing Leafless (LFS), a gene that promotes gland formation. Intriguingly, homologous GCR genes from tobacco and petunia also inhibit gland formation, suggesting that the GCR-mediated repression mechanism likely represents a conserved regulatory pathway for glands across different plant species.


Subject(s)
Solanum lycopersicum , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Trichomes , Solanum lycopersicum/genetics , Plants, Genetically Modified/metabolism , Gene Expression Regulation, Plant
2.
Trials ; 24(1): 684, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872599

ABSTRACT

INTRODUCTION: With regard to the esthetics and comfort of orthodontic treatment, the requirement for removable clear aligners (CAs) is increasing. Unlike conventional fixed orthodontic appliances, CAs were made of thermoplastic film by thermoforming on the personalized dental models. The construction of orthodontic thermoplastic is a critical factor for orthodontic tooth movement (OTM). Polyethylene terephthalate glycol-modified (PETG) and thermoplastic polyurethane (TPU) are the most commonly orthodontic thermoplastics; however, the evidence of the differences between different orthodontic thermoplastic are limited to vitro environment and the evidence in vivo environment is not available. Therefore, this trial aims to provide reliable evidence for orthodontists' personalized treatment plans whether the two most commonly used orthodontic thermoplastics of PETG and TPU have differences in the efficiency of OTM. METHODS AND ANALYSIS: This randomized controlled clinical study will recruit 44 orthodontic patients for orthodontic treatment. All the subjects will be randomized into two groups (PETG and TPU, n = 22 for each group). In the first stage (M0 to M1), clear aligners will be made of two orthodontic thermoplastics and move the maxillary first or second premolars 2 mm. In the second stage, patients will take the standard orthodontic treatments. The primary outcome will be the efficiency of clear aligners made of different materials on the digital models. The secondary outcome will be the efficiency of clear aligners made of different materials on the cone-beam computed tomography (CBCT). The efficiency will be calculated through the superimposition of the digital models and CBCT. DISCUSSION: The results from this trial will serve as evidence for orthodontists and manufacturers and clarify whether the difference in orthodontic thermoplastics significantly impacts the efficiency of OTM. TRIAL REGISTRATION NUMBER: ChiCTR2300070980. Registered on 27 April 2023. https://www.chictr.org.cn/showproj.html?proj=186253.


Subject(s)
Orthodontic Appliances, Removable , Tooth Movement Techniques , Humans , Tooth Movement Techniques/adverse effects , Orthodontic Appliances, Fixed , Cone-Beam Computed Tomography , Randomized Controlled Trials as Topic
3.
Oral Dis ; 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37357358

ABSTRACT

OBJECTIVE: Obesity can affect periodontal tissues and exacerbate periodontitis. Pyroptosis, a newly identified type of inflammatory cell death, is involved in the development of periodontal inflammation. The saturated fatty acid palmitic acid (PA) is elevated in obese patients. The effect of PA on pyroptosis in periodontal ligament cells (PDLCs) and its underlying mechanisms remain unknown. MATERIALS AND METHODS: Human PDLCs were isolated from healthy individuals and cultured for experiments. The effects of PA on PDLC pyroptosis and the underlying mechanisms were examined by transmission electron microscopy, quantitative real-time PCR and western blotting. RESULTS: The morphology of PDLCs in the PA group indicated pyroptotic characteristics, including swollen cells, plasma membrane rupture and changes in subcellular organelles. PA induced inflammatory responses in PDLCs, as indicated by an increase in IL-1ß in the cell culture supernatant. Furthermore, we found that the pyroptosis-related proteins caspase-1, caspase-4 and GSDMD were involved in PA-induced cell death. GSDMD and caspase-4 inhibitors alleviated pyroptotic death of PDLCs. Moreover, PA promoted NF-κB P65 phosphorylation. A NF-κB inhibitor decreased IL-1ß expression and partly rescued cell death induced by PA. CONCLUSION: PA activated the NF-κB pathway and induced the inflammatory response in PDLCs. Caspase-4/GSDMD mediated PDLC pyroptosis induced by PA.

4.
Stem Cell Res Ther ; 13(1): 401, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35932080

ABSTRACT

INTRODUCTION: The basis of orthodontic tooth movement (OTM) is the reconstruction of periodontal tissue under stress. Increasing the speed of OTM has always been the focus of attention. OBJECTIVES: Periodontal ligament stem cells (PDLSCs) are direct effector cells of mechanical force, but the mechanism by which PDLSCs sense mechanical stimuli is unclear. METHODS: Human PDLSCs (hPDLSCs) were analyzed in the presence or absence of force loading with the Flexcell loading system in vitro. Then, periodontal tissues were analyzed after mechanical stimulation in vivo. In addition, cells in a confined microenvironment were analyzed to observe changes in the cytoskeleton and migration. Finally, TRPC6-/- mice were used to further verify the effect of TRPC6. After force application, the OTM distance, bone marrow density (BMD), TRPC6 and COL1 expression, and TRAP staining were evaluated in periodontal tissues. RESULTS: RNA sequencing (RNA-seq) and western blot analyses revealed that TRPC6 was important during mechanical force application to hPDLSCs. Appropriate mechanical force application also induced TRPC6 activation in the OTM model and the confined microenvironment. Under a slightly confined microenvironment, treatment with the TRPC6 inhibitor SKF96365 and TRPC6 knockout decreased the migration speed of hPDLSCs and mouse bone marrow mesenchymal stem cells (mBMSCs). In addition, TRPC6-/- mice showed lower OTM distances and reduced osteogenic and osteoclastic differentiation. CONCLUSION: In summary, TRPC6 activation in PDLSCs mediated by appropriate mechanical force application contributes to periodontal tissue reconstruction. PDLSCs modulate periodontal tissue remodeling under appropriate mechanical stimulation through TRPC6; however, under excessive stress, alveolar bone and tooth roots are readily absorbed. Under this condition, environmental factors play a leading role, and the regulatory effect of TRPC6 is not obvious.


Subject(s)
Mesenchymal Stem Cells , Periodontal Ligament , Animals , Cell Differentiation/physiology , Humans , Mesenchymal Stem Cells/metabolism , Mice , Osteogenesis/physiology , Stem Cells/metabolism , TRPC6 Cation Channel/metabolism , Tooth Movement Techniques
5.
Int Immunopharmacol ; 100: 108134, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34547679

ABSTRACT

Transient receptor potential channel 6 (TRPC6) is a receptor-operated Ca2+ channel that plays an important role in Ca2+ influx in the majority of non-excitable cells and influences calcium signalling and cellular responses. Therefore, the purpose of the present study was to gain insight into the role of TRPC6 in the osteogenesis of periodontal ligament cells (PDLCs). By western blot and immunohistochemical staining, the protein level of TRPC6 was found to be increased in a time-dependent manner during osteoblastic differentiation of PDLCs. In addition, the TRPC6 inhibitor SKF96365 was used to block the function of TRPC6 and inhibit osteoblastic differentiation of PDLCs. The TRPC6 activator hyperforin dicyclohexylammonium salt (hyperforin DCHA) was used to activate TRPC6 and promote osteoblastic differentiation of PDLCs. In vivo, wild-type mice showed better bone regeneration than TRPC6-/- mice, suggesting that TRPC6 has notable osteogenic induction properties and is important for bone defect repair. In conclusion, the current data demonstrated that TRPC6 plays a significant role in osteoblastic differentiation of PDLCs, suggesting that it may be a promising therapeutic target in osteogenesis.


Subject(s)
Osteoblasts/metabolism , Osteogenesis , Periodontal Ligament/metabolism , Skull/metabolism , TRPC6 Cation Channel/metabolism , Adolescent , Animals , Cell Differentiation , Cells, Cultured , Child , Female , Humans , Imidazoles/pharmacology , Male , Mice, Knockout , Osteoblasts/drug effects , Osteoblasts/pathology , Periodontal Ligament/drug effects , Periodontal Ligament/pathology , Signal Transduction , Skull/drug effects , Skull/pathology , TRPC6 Cation Channel/drug effects , TRPC6 Cation Channel/genetics , Terpenes/pharmacology
6.
Int Immunopharmacol ; 99: 107901, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34273637

ABSTRACT

Periodontitis is initiated by serious and sustained bacterial infection and ultimately results in chronic immune-mediated inflammation, tissue destruction, and bone loss. The pathogenesis of periodontitis remains unclear. Host immunological responses to periodontal bacteria ultimately determine the severity and mechanisms governing periodontitis progression. This study aimed to clarify the effect of the hypoxia-inducible factor-1α (HIF-1α) activator dimethyloxalylglycine (DMOG) on a mouse periodontitis model and its underlying role in macrophage polarization. qRT-PCR analysis showed that DMOG inhibited the M1-like polarization of both RAW264.7 macrophages and murine bone marrow macrophages (BMMs) and downregulated TNF-α, IL-6, CD86, and MCP-1 expression in vitro. Immunofluorescence staining and flow cytometry also confirmed the less percentage of F4/80 + CD86 + cells after DMOG treatment. The phosphorylation of NF-κB pathway was also inhibited by DMOG with higher level of HIF-1α expression. Furthermore, mice treated with DMOG showed decreased alveolar bone resorption in the experimental periodontitis model, with significant increases in alveolar bone volume/tissue volume (BV/TV) and bone mineral density (BMD). DMOG treatment of mice decreased the ratio of M1/M2 (CD86+/CD206+) macrophages in periodontal tissues, resulting in the downregulation of proinflammatory cytokines such as TNF-α and IL-6 and increased levels of anti-inflammatory factors such as IL-4 and IL-10. DMOG treatment promoted the number of HIF-1α-positive cells in periodontal tissues. This study demonstrated the cell-specific roles of DMOG in macrophage polarization in vitro and provided insight into the mechanism underlying the protective effect of DMOG in a model of periodontitis.


Subject(s)
Alveolar Bone Loss/drug therapy , Amino Acids, Dicarboxylic/therapeutic use , Macrophages/drug effects , Periodontitis/drug therapy , Alveolar Bone Loss/diagnostic imaging , Alveolar Bone Loss/immunology , Alveolar Bone Loss/pathology , Amino Acids, Dicarboxylic/pharmacology , Animals , Cytokines/genetics , Hypoxia-Inducible Factor 1, alpha Subunit , Macrophages/immunology , Male , Maxilla/diagnostic imaging , Maxilla/pathology , Mice , Mice, Inbred C57BL , NF-kappa B/immunology , Periodontitis/diagnostic imaging , Periodontitis/immunology , Periodontitis/pathology , RAW 264.7 Cells , Signal Transduction/drug effects , X-Ray Microtomography
7.
Nat Sci Sleep ; 13: 2203-2219, 2021.
Article in English | MEDLINE | ID: mdl-34992480

ABSTRACT

PURPOSE: Obesity is a worldwide metabolic disease and a critical risk factor for several chronic conditions. Obstructive sleep apnea (OSA) is an important complication of obesity. With the soaring morbidity of obesity, the prevalence of OSA has markedly increased. However, the underlying mechanism of the high relevance between obesity and OSA has not been elucidated. This study investigated the effects of obesity on the structure and function of the genioglossus to explore the possible mechanisms involved in OSA combined with obesity. METHODS: Six-week-old male C57BL/6J mice were fed high-fat diet (HFD, 60% energy) or normal diet (Control, 10% energy) for 16 weeks. The muscle fibre structure and electromyography (EMG) activity of genioglossus were measured. The ultrastructure and function of mitochondrial, oxidative damage and apoptosis in genioglossus were detected by transmission electron microscopy (TEM), qPCR, Western blotting, immunohistochemistry and TUNEL staining. We further studied the influence of palmitic acid (PA) on the proliferation and myogenic differentiation of C2C12 myoblasts, as well as mitochondrial function, oxidative stress, and apoptosis in C2C12 myotubes. RESULTS: Compared with the control, the number of muscle fibres was decreased, the fibre type was remarkably changed, and the EMG activity had declined in genioglossus. In addition, a HFD also reduced mitochondria quantity and function, induced excessive oxidative stress and increased apoptosis in genioglossus. In vitro, PA treatment significantly inhibited the proliferation and myogenic differentiation of C2C12 myoblasts. Moreover, PA decreased the mitochondrial membrane potential, upregulated mitochondrial reactive oxygen species (ROS) levels, and activated the mitochondrial-related apoptotic pathway in myotubes. CONCLUSION: Our findings suggest that a HFD caused genioglossus injury in obese mice. The mitochondrial dysfunction and the accompanying oxidative stress were involved in the genioglossus injury, which may provide potential therapeutic targets for OSA with obesity.

SELECTION OF CITATIONS
SEARCH DETAIL
...