Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Clin Pharmacol Ther ; 115(4): 839-846, 2024 04.
Article in English | MEDLINE | ID: mdl-38372189

ABSTRACT

Statin-associated muscle symptoms (SAMS) can lead to statin nonadherence. This paper aims to develop a pharmacological SAMS risk stratification (PSAMS-RS) score using a previously developed PSAMS phenotyping algorithm that distinguishes objective vs. nocebo SAMS using electronic health record (EHR) data. Using our PSAMS phenotyping algorithm, SAMS cases and controls were identified from Minnesota Fairview EHR, with the statin user cohort divided into derivation (January 1, 2010, to December 31, 2018) and validation (January 1, 2019, to December 31, 2020) cohorts. A Least Absolute Shrinkage and Selection Operator regression model was applied to identify significant features for PSAMS. PSAMS-RS scores were calculated and the clinical utility of stratifying PSAMS risk was assessed by comparing hazard ratios (HRs) between fourth vs. first score quartiles. PSAMS cases were identified in 1.9% (310/16,128) of the derivation and 1.5% (64/4,182) of the validation cohorts. Sixteen out of 38 clinical features were determined to be significant predictors for PSAMS risk. Patients within the fourth quartile of the PSAMS scores had an over sevenfold (HR: 7.1, 95% confidence interval (CI): 4.03-12.45, derivation cohort) or sixfold (HR: 6.1, 95% CI: 2.15-17.45, validation cohort) higher hazard of developing PSAMS vs. those in their respective first quartile. The PSAMS-RS score is a simple tool to stratify patients' risk of developing PSAMS after statin initiation which could inform clinician-guided pre-emptive measures to prevent PSAMS-related statin nonadherence.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Electronic Health Records , Risk Factors , Muscles , Risk Assessment
2.
JAMIA Open ; 6(4): ooad087, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37881784

ABSTRACT

Importance: Statins are widely prescribed cholesterol-lowering medications in the United States, but their clinical benefits can be diminished by statin-associated muscle symptoms (SAMS), leading to discontinuation. Objectives: In this study, we aimed to develop and validate a pharmacological SAMS clinical phenotyping algorithm using electronic health records (EHRs) data from Minnesota Fairview. Materials and Methods: We retrieved structured and unstructured EHR data of statin users and manually ascertained a gold standard set of SAMS cases and controls using the published SAMS-Clinical Index tool from clinical notes in 200 patients. We developed machine learning algorithms and rule-based algorithms that incorporated various criteria, including ICD codes, statin allergy, creatine kinase elevation, and keyword mentions in clinical notes. We applied the best-performing algorithm to the statin cohort to identify SAMS. Results: We identified 16 889 patients who started statins in the Fairview EHR system from 2010 to 2020. The combined rule-based (CRB) algorithm, which utilized both clinical notes and structured data criteria, achieved similar performance compared to machine learning algorithms with a precision of 0.85, recall of 0.71, and F1 score of 0.77 against the gold standard set. Applying the CRB algorithm to the statin cohort, we identified the pharmacological SAMS prevalence to be 1.9% and selective risk factors which included female gender, coronary artery disease, hypothyroidism, and use of immunosuppressants or fibrates. Discussion and Conclusion: Our study developed and validated a simple pharmacological SAMS phenotyping algorithm that can be used to create SAMS case/control cohort to enable further analysis which can lead to the development of a SAMS risk prediction model.

3.
mSystems ; 8(5): e0039123, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37729581

ABSTRACT

IMPORTANCE: Edwardsiella tarda is a significant fish pathogen that can live in challenging environments of reactive oxygen species (ROS), such as inside the phagocytes. Metabolic reconfiguration has been increasingly associated with bacterial oxidative tolerance and virulence. However, the metabolic proteins of E. tarda involved in such processes remain elusive. By proteomic analysis and functional characterization of protein null mutants, the present study identified eight crucial proteins for bacterial oxidative resistance and intracellular infection. Seven of them are metabolic proteins dictating the metabolic flux toward the generation of pyruvate, a key metabolite capable of scavenging ROS molecules. Furthermore, L-aspartate uptake, which can fuel the pyruvate generation, was found essential for the full antioxidative capacity of E. tarda. These findings identified seven metabolic proteins involved in bacterial oxidative adaptation and indicate that metabolic reprogramming toward pyruvate was likely a pivotal strategy of bacteria for antioxidative adaptation and intracellular survival.


Subject(s)
Edwardsiella tarda , Proteomics , Animals , Reactive Oxygen Species/metabolism , Edwardsiella tarda/genetics , Antioxidants/metabolism , Pyruvates/metabolism , Cell Proliferation
4.
medRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645885

ABSTRACT

Introduction: Statin-associated muscle symptoms (SAMS) contribute to the nonadherence to statin therapy. In a previous study, we successfully developed a pharmacological SAMS (PSAMS) phenotyping algorithm that distinguishes objective versus nocebo SAMS using structured and unstructured electronic health records (EHRs) data. Our aim in this paper was to develop a pharmacological SAMS risk stratification (PSAMS-RS) score using these same EHR data. Method: Using our PSAMS phenotyping algorithm, SAMS cases and controls were identified using University of Minnesota (UMN) Fairview EHR data. The statin user cohort was temporally divided into derivation (1/1/2010 to 12/31/2018) and validation (1/1/2019 to 12/31/2020) cohorts. First, from a feature set of 38 variables, a Least Absolute Shrinkage and Selection Operator (LASSO) regression model was fitted to identify important features for PSAMS cases and their coefficients. A PSAMS-RS score was calculated by multiplying these coefficients by 100 and then adding together for individual integer scores. The clinical utility of PSAMS-RS in stratifying PSAMS risk was assessed by comparing the hazard ratio (HR) between 4th vs 1st score quartile. Results: PSAMS cases were identified in 1.9% (310/16128) of the derivation and 1.5% (64/4182) of the validation cohort. After fitting LASSO regression, 16 out of 38 clinical features were determined to be significant predictors for PSAMS risk. These factors are male gender, chronic pulmonary disease, neurological disease, tobacco use, renal disease, alcohol use, ACE inhibitors, polypharmacy, cerebrovascular disease, hypothyroidism, lymphoma, peripheral vascular disease, coronary artery disease and concurrent uses of fibrates, beta blockers or ezetimibe. After adjusting for statin intensity, patients in the PSAMS score 4th quartile had an over seven-fold (derivation) (HR, 7.1; 95% CI, 4.03-12.45) and six-fold (validation) (HR, 6.1; 95% CI, 2.15-17.45) higher hazard of developing PSAMS versus those in 1st score quartile. Conclusion: The PSAMS-RS score can be a simple tool to stratify patients' risk of developing PSAMS after statin initiation which can facilitate clinician-guided preemptive measures that may prevent potential PSAMS-related statin non-adherence.

5.
medRxiv ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37215024

ABSTRACT

Background: Statins are widely prescribed cholesterol-lowering medications in the US, but their clinical benefits can be diminished by statin-associated muscle symptoms (SAMS), leading to discontinuation. In this study, we aimed to develop and validate a pharmacological SAMS clinical phenotyping algorithm using electronic health records (EHRs) data from Minnesota Fairview. Methods: We retrieved structured and unstructured EHR data of statin users and manually ascertained a gold standard set of SAMS cases and controls using the SAMS-CI tool from clinical notes in 200 patients. We developed machine learning algorithms and rule-based algorithms that incorporated various criteria, including ICD codes, statin allergy, creatine kinase elevation, and keyword mentions in clinical notes. We applied the best performing algorithm to the statin cohort to identify SAMS. Results: We identified 16,889 patients who started statins in the Fairview EHR system from 2010-2020. The combined rule-based (CRB) algorithm, which utilized both clinical notes and structured data criteria, achieved similar performance compared to machine learning algorithms with a precision of 0.85, recall of 0.71, and F1 score of 0.77 against the gold standard set. Applying the CRB algorithm to the statin cohort, we identified the pharmacological SAMS prevalence to be 1.9% and selective risk factors which included female gender, coronary artery disease, hypothyroidism, use of immunosuppressants or fibrates. Conclusion: Our study developed and validated a simple pharmacological SAMS phenotyping algorithm that can be used to create SAMS case/control cohort for further analysis such as developing SAMS risk prediction model.

6.
Fish Shellfish Immunol ; 134: 108594, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36754156

ABSTRACT

Cathepsin H and Cathepsin B are two lysosomal cysteine proteases participating in various physiological processes including immune responses. In fish, the functional roles of Cathepsin H and Cathepsin B during bacterial infection are less understood. In a previous work, we characterized a Cathepsin B homologue (CsCatB) of half-smooth tongue sole (Cynoglossus semilaevis), an economically valuable fish species in China. In this report, we identified a Cathepsin H homologue (CsCatH) from C. semilaevis. In healthy tongue sole, the transcriptional expression of CsCatH was detected in nine different tissues. Laser scanning confocal microscopic analysis showed that ectopically expressed CsCatH and CsCatB were co-localized with the lysosome. Upon infection by Edwardsiella tarda, a significant fish pathogen which caused a severe fish disease termed edwardsiellosis, the expressions of CsCatH and CsCatB were remarkedly upregulated. The knockdown of CsCatH and CsCatB significantly increased the replication of E. tarda and mitigated E. tarda-induced apoptosis in tongue sole tissues. These findings revealed the importance of CsCatH and CsCatB in anti-bacterial immunity of tongue sole.


Subject(s)
Bacterial Infections , Fish Diseases , Flatfishes , Flounder , Animals , Cathepsin B , Cathepsin H/metabolism , Edwardsiella tarda/physiology , Fish Proteins
7.
PLoS One ; 18(2): e0279830, 2023.
Article in English | MEDLINE | ID: mdl-36724193

ABSTRACT

BACKGROUND: Hmong men in Minnesota exhibit a high prevalence of gout and hyperuricemia. Although evidence of vitamin C's effectiveness as a treatment for gout is mixed, analysis of therapeutic benefit based on an individual's multiomic signature may identify predictive markers of treatment success. OBJECTIVES: The primary objective of the Hmong Microbiome ANd Gout, Obesity, Vitamin C (HMANGO-C) study was to assess the effectiveness of vitamin C on serum urate in Hmong adults with and without gout/hyperuricemia. The secondary objectives were to assess if 1) vitamin C impacts the taxonomic and functional patterns of microbiota; 2) taxonomic and functional patterns of microbiota impact vitamin C's urate-lowering effects; 3) genetic variations impact vitamin C's urate-lowering effects; 4) differential microbial biomarkers exist for patients with or without gout; and 5) there is an association between obesity, gut microbiota and gout/hyperuricemia. METHODS: This prospective open-labelled clinical trial was guided by community-based participatory research principles and conducted under research safety restrictions for SARS-CoV-2. We aimed to enroll a convenient sample of 180 Hmong adults (120 with gout/hyperuricemia and 60 without gout/hyperuricemia) who provided medical, demographic, dietary and anthropometric information. Participants took vitamin C 500mg twice daily for 8 weeks and provided pre-and post- samples of blood and urine for urate measurements as well as stool samples for gut microbiome. Salivary DNA was also collected for genetic markers relevant to uric acid disposition. EXPECTED RESULTS: We expected to quantify the impact of vitamin C on serum urate in Hmong adults with and without gout/hyperuricemia. The outcome will enhance our understanding of how gut microbiome and genomic variants impact the urate-lowering of vitamin C and associations between obesity, gut microbiota and gout/hyperuricemia. Ultimately, findings may improve our understanding of the causes and potential interventions that could be used to address health disparities in the prevalence and management of gout in this underserved population. TRIAL REGISTRATION: ClinicalTrials.gov NCT04938024 (first posted: 06/24/2021).


Subject(s)
COVID-19 , Gout , Hyperuricemia , Microbiota , Male , Adult , Humans , Uric Acid , Ascorbic Acid/therapeutic use , Prospective Studies , COVID-19/complications , SARS-CoV-2 , Gout/drug therapy , Gout/epidemiology , Gout/genetics , Gout Suppressants/therapeutic use , Obesity/epidemiology , Obesity/genetics , Obesity/complications , Vitamins/therapeutic use , Microbiota/genetics , Clinical Trials, Phase II as Topic
8.
Cureus ; 14(9): e28905, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36249660

ABSTRACT

Background Previous research predicted that Hmong, an understudied East Asian subpopulation, might require significantly lower warfarin doses than East Asian patients partially due to their unique genetic and clinical factors. However, such findings have not been corroborated using real-world data. Methods This was a retrospective cohort study of Hmong and East Asian patients receiving warfarin. Warfarin stable doses (WSD) and time to the composite outcome, including international normalized ratio (INR) greater than four incidences or major bleeding within six months of warfarin initiation, were compared. Results This cohort study included 55 Hmong and 100 East Asian patients. Compared to East Asian patients, Hmong had a lower mean WSD (14.5 vs. 20.4 mg/week, p<0.05). In addition, Hmong had a 3.1-fold (95% CI: 1.1-9.3, p<0.05) higher hazard of the composite outcome. Conclusion Using real-world data, significant differences in warfarin dosing and hazard for the composite outcome of INR>4 and major bleeding were observed between Hmong and East Asian patients. These observations further underscore the importance of recognizing subpopulation-based differences in warfarin dosing and outcomes.

9.
Front Immunol ; 13: 1010948, 2022.
Article in English | MEDLINE | ID: mdl-36189244

ABSTRACT

Water temperature elevation as a consequence of global warming results in increased incidence of bacterial disease, such as edwardsiellosis, in fish farming. Edwardsiellosis is caused by the bacterial pathogen Edwardsiella tarda and affects many farmed fish including flounder (Paralichthys olivaceus). Currently, the effect of temperature on the metabolic response of flounder to E. tarda infection is unclear. In this study, we found that compared to low temperature (15°C), high temperature (23°C) enhanced E. tarda dissemination in flounder tissues. To examine the impact of temperature on the metabolism of flounder induced by E. tarda, comparative metabolomics were performed, which identified a large number of metabolites responsive to E. tarda invasion and temperature alteration. During E. tarda infection, the metabolic profile induced by elevated temperature was mainly featured by extensively decreased amino acids and TCA intermediates such as succinate, a proven immune regulator. Further, 38 potential metabolite markers of temperature effect (MMTE) in association with bacterial infection were identified. When used as exogenous supplements, two of the MMTE, i.e., L-methionine and UDP-glucose, effectively upregulated the expression of pro-inflammatory cytokines and suppressed E. tarda infection in flounder leukocytes. Taken together, the results of this study indicate an important influence of temperature on the metabolism of flounder during bacterial infection, which eventually affects the survivability of the fish.


Subject(s)
Enterobacteriaceae Infections , Fish Diseases , Flounder , Amino Acids/metabolism , Animals , Cytokines/metabolism , Edwardsiella tarda , Glucose/metabolism , Methionine , Succinates/metabolism , Temperature , Uridine Diphosphate/metabolism , Water
10.
Pathogens ; 11(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35456139

ABSTRACT

Edwardsiella piscicida is a pathogenic bacterium, which can infect a number of fish species and cause a disease termed edwardsiellosis, threatening global fish farming with high prevalence and mortality. Thiamine (Vitamin B1), functioning in the form of thiamine pyrophosphate (TPP), is essential for almost all organisms. Bacteria acquire TPP by biosynthesis or by transportation of exogenous thiamine. TPP availability has been associated with bacterial pathogenicity, but the underlying mechanisms remain to be discovered. The role of thiamine in the pathogenicity of E. piscicida is unknown. In this study, we characterized a thiamine transporter (TT) operon in E. piscicida. The deletion of the TT operon resulted in an intracellular TPP lacking situation, which led to attenuated overall pathogenicity, impaired abilities associated with motility and host cell adhesion, as well as decreased expression of certain flagellar and adhesion genes. Moreover, TPP starvation led to intracellular c-di-GMP reduction, and introducing into the TPP-suppressed mutant strain an exogenous diguanylate cyclase for c-di-GMP synthesis restored the virulence loss. Taken together, this work reveals the involvement of thiamine uptake in the virulence regulation of E. piscicida, with c-di-GMP implicated in the process. These finding could be employed to explore potential drug targets against E. piscicida.

11.
Front Genet ; 13: 1070236, 2022.
Article in English | MEDLINE | ID: mdl-36685861

ABSTRACT

Underrepresentation of subpopulations within geo-ancestral groups engaged in research can exacerbate health disparities and impair progress toward personalized medicine. This is particularly important when implementing pharmacogenomics which uses genomic-based sources of variability to guide medication selection and dosing. This mini-review focuses on pharmacogenomic findings with Hmong in the United States and their potential clinical implications. By actively engaging Hmong community in pharmacogenomic-based research, several clinically relevant differences in allele frequencies were observed within key pharmacogenes such as CYP2C9 and CYP2C19 in Hmong compared to those in either East Asians or Europeans. Additionally, using state-of-the-art genome sequencing approaches, Hmong appear to possess novel genetic variants within CYP2D6, a critical pharmacogene affecting pharmacokinetics of a broad range of medications. The allele frequency differences and novel alleles in Hmong have translational impact and real-world clinical consequences. For example, Hmong patients exhibited a lower warfarin stable dose requirement compared to East Asian patients. This was predicted based on Hmong's unique genetic and non-genetic factors and confirmed using real-world data from clinical practice settings. By presenting evidence of the genetic uniqueness and its translational impact within subpopulations, such as the Hmong, we hope to inspire greater inclusion of other geo-ancestrally underrepresented subpopulations in pharmacogenomic-based research.

12.
Biomolecules ; 11(8)2021 08 19.
Article in English | MEDLINE | ID: mdl-34439908

ABSTRACT

Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad range of hosts, including fish and mammals. In the present study, we used an advanced antibody array technology to identify the expression pattern of cytokines induced by E. tarda in a mouse infection model. In total, 31 and 24 differentially expressed cytokines (DECs) were identified in the plasma at 6 h and 24 h post-infection (hpi), respectively. The DECs were markedly enriched in the Gene Ontology (GO) terms associated with cell migration and response to chemokine and in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with immunity, diseases, and infection. Ten key DECs, including IL6 and TNF-α, were found to form extensive protein-protein interaction networks. IL6 was demonstrated to inhibit E. tarda infection and be required for E. tarda-induced inflammatory response. TNF-α also exerted an inhibitory effect on E. tarda infection, and knockdown of fish (Japanese flounder) TNF-α promoted E. tarda invasion in host cells. Together, the results of this study revealed a comprehensive profile of cytokines induced by E. tarda, thus adding new insights into the role of cytokine-associated immunity against bacterial infection and also providing the potential plasma biomarkers of E. tarda infection for future studies.


Subject(s)
Edwardsiella tarda/immunology , Edwardsiella tarda/metabolism , Enterobacteriaceae Infections/microbiology , Animals , Animals, Genetically Modified , Anti-Bacterial Agents , Cytokines/genetics , Cytokines/metabolism , Edwardsiella tarda/genetics , Female , Flounder/genetics , Gene Expression Profiling , Gene Ontology , Immune System , Interleukin-6/metabolism , Mice , Mice, Inbred BALB C , Protein Interaction Maps , RAW 264.7 Cells , Tumor Necrosis Factor-alpha/metabolism
13.
Virulence ; 12(1): 1362-1376, 2021 12.
Article in English | MEDLINE | ID: mdl-34009097

ABSTRACT

Recent studies indicate that the Bacillus species is distributed in deep-sea environments. However, no specific studies on deep-sea Bacillus cereus have been documented. In the present work, we isolated a B. cereus strain, H2, from the deep-sea cold seep in South China Sea. We characterized the pathogenic potential of H2 and investigated H2-induced death of different types of cells. We found that H2 was capable of tissue dissemination and causing acute mortality in mice and fish following intraperitoneal/intramuscular injection. In vitro studies revealed that H2 infection of macrophages induced pyroptosis and activation of the NLRP3 inflammasome pathway that contributed partly to cell death. H2 infection activated p38, JNK, and ERK, but only JNK proved to participate in H2-triggered cell death. Reactive oxygen species (ROS) and intracellular Ca2+ were essential to H2-induced activation of JNK and NLRP3 inflammasome. In contrast, lysosomal rupture and cathepsins were required for H2-induced NLRP3 inflammasome activation but not for JNK activation. This study revealed for the first time the virulence characteristics of deep-sea B. cereus and provided new insights into the mechanism of B. cereus infection.


Subject(s)
Bacillus cereus/pathogenicity , Inflammasomes , Lysosomes/microbiology , MAP Kinase Signaling System , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Inflammasomes/metabolism , MAP Kinase Kinase 4 , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species
14.
Pharmacotherapy ; 41(3): 265-276, 2021 03.
Article in English | MEDLINE | ID: mdl-33202062

ABSTRACT

INTRODUCTION: Warfarin's narrow therapeutic index and high variability in dosage requirements make dosage selection critical. Genetic factors are known to impact warfarin dosage selection. The Hmong are a unique Asian subpopulation numbering over 278,000 in the United States whose participation in genetics-based research is virtually nonexistent. The translational significance of early reports of warfarin pharmacogene differences in Hmong has not been evaluated. OBJECTIVES: (i) To validate previously identified allele frequency differences relevant to warfarin dosing in Hmong versus East Asians and (ii) to compare predicted warfarin sensitivity and maintenance doses between a Hmong population and an East Asian cohort. METHOD: DNA collected from two independent cohorts (n=236 and n=198) of Hmong adults were genotyped for CYP2C9 (*2, *3), VKORC1 (G-1639A), and CYP4F2 (*3). Allele frequencies between the combined Hmong cohort (n=433) and East Asians (n=1165) from the 2009 International Warfarin Pharmacogenetics Consortium (IWPC) study were compared using a χ2 test. Percentages of Hmong and East Asian participants predicted to be very sensitive to warfarin were compared using a χ2 test, and the predicted mean warfarin maintenance dose was compared with a t test. RESULTS: The allele frequencies of CYP2C9*3 in the combined Hmong cohort and CYP4F2*3 in the VIP-Hmong cohort are significantly different from those in East Asians (18.9% vs 3.0%, p<0.001 and 9.8% vs 22.1%, p<0.001, respectively). Comparing the combined Hmong cohort to the East Asian cohort, the percentage of participants predicted to be very sensitive to warfarin was significantly higher (28% vs 5%, p<0.01) and the mean predicted warfarin maintenance dose was significantly lower (19.8 vs 21.3 mg/week, p<0.001), respectively. CONCLUSION: The unique allele frequencies related to warfarin when combined with nongenetic factors observed in the Hmong translate into clinically relevant differences in predicted maintenance dose requirements for Hmong versus East Asians.


Subject(s)
Asian People , Warfarin , Adult , Algorithms , Asian People/genetics , Genotype , Humans , Warfarin/administration & dosage
15.
Int J Mol Sci ; 20(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731575

ABSTRACT

Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad host range, including fish, reptiles, and mammals. One prominent virulence feature of E. tarda is its ability to survive and replicate in host phagocytes, but the relevant molecular mechanism is largely unknown. In this study, we examined the transcriptome profiles of RAW264.7 cells, a murine macrophage cell line, infected with live E. tarda or stimulated with dead E. tarda for 4 h and 8 h. Eighteen libraries were constructed, and an average of 69 million clean reads per library were obtained, with ~81.63% of the reads being successfully mapped to the reference genome. In total, 208 and 232 differentially expressed genes (DEGs) were identified between live and dead E. tarda-treated cells at 4 h and 8 h post-infection, respectively. The DEGs were markedly enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with immunity. Live E. tarda differed strikingly from dead E. tarda in the regulation of immune related genes. Compared with dead E. tarda-treated cells, live E. tarda-treated cells exhibited marked and significant suppression in the induction of a large amount of immune genes, including RIG-I-like receptors, cytokines, and interferon-related genes. Furthermore, some of the immune genes highly regulated by live E. tarda formed complicated interaction networks with each other. Together, the results of this study revealed a transcriptome profile specifically induced by the active virulence elements of live E. tarda during the infection process, thus adding new insights into the intracellular infection mechanism of E. tarda. This study also provided a valuable set of target genes for further study of the immune evasion strategy of E. tarda.


Subject(s)
Edwardsiella tarda/immunology , Edwardsiella tarda/pathogenicity , Immune Evasion/physiology , Animals , Gene Expression Profiling , Macrophages/metabolism , Mice , Phosphorylation , RAW 264.7 Cells , Transcriptome/genetics , Virulence
16.
Cell Stress Chaperones ; 21(4): 583-91, 2016 07.
Article in English | MEDLINE | ID: mdl-27084408

ABSTRACT

Small heat shock proteins (sHsps) are a class of chaperones with low molecular weight, feathered by a C-terminal α-crystallin domain (ACD). They participate in reestablishing the stability of partially denatured proteins and therefore contribute to cellular homeostasis. In this work, we identified a sHsp homolog (designated as sHsp19) from Haliotis discus hannai, an economically important farmed mollusk in East Asia. sHsp19 possesses a sHsp hallmark domain, which exhibits the typical fold of ACD as revealed by a three-dimensional model constructed through an iterative threading assembly refinement method. The amino acid sequence sHsp19 shares low identities with any other known sHsps, with percentages below 35 %. Besides, sHsp19 shows relatively distant phylogenetic relationships with sHsps of various mollusks, including two other identified sHsps of abalone subspecies. qRT-PCR analysis indicated that the expression of sHsp19 occurred in multiple tissues. Upon exposure to thermal, oxidative, and multiple toxic metal stresses, the level of sHsp19 mRNA was rapidly elevated in a persistent fashion, with the maximum increase up to 170.58-, 405.84-, and 361.96-fold, respectively. These results indicate sHsp is a novel sHsp that possesses the distinguishing structural feature of sHsps but has remote homologies with known sHsps. It is likely to be important in stress adaptation of abalone and may be applied as a bioindicator for monitoring pollution or detrimental changes of environment in abalone culture.


Subject(s)
Environment , Gastropoda/genetics , Gene Expression Profiling , Heat-Shock Proteins, Small/chemistry , Heat-Shock Proteins, Small/genetics , Models, Molecular , Stress, Physiological , Structural Homology, Protein , Amino Acid Sequence , Animals , Base Sequence , Heat-Shock Proteins, Small/metabolism , Ions , Metals/toxicity , Oxidative Stress , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Stress, Physiological/genetics , Temperature
17.
Springerplus ; 5: 92, 2016.
Article in English | MEDLINE | ID: mdl-26848432

ABSTRACT

LuxS/AI-2 quorum sensing is involved in the virulence of many bacterial pathogens, including the fish pathogen Edwardsiella tarda. In a previous study, we identified a small peptide, 5906, which inhibits E. tarda LuxS activity by binding specifically to LuxS in a manner that probably prevents the formation of functional LuxS homodimer. In the present study, using Japanese flounder as the experimental animal, we analyzed the antibacterial effect of 5906 produced by DH5α/p5906 (an Escherichia coli strain that produces 5906) and pID5906 (a mammalian plasmid that functional in flounder constitutively expresses 5906) against different bacterial fish pathogens. We found that fish administered with both DH5α/p5906 and pID5906 exhibited reduced bacterial recovery following E. tarda challenge. We also examined the effect of 5906 on the infection caused by another two fish pathogen, Aeromonas hydrophila and Vibrio harveyi. The results indicated that 5906 produced by DH5α/p5906 inhibited the AI-2 activity of A. hydrophila and V. harveyi, and that fish administered with DH5α/p5906 showed enhanced resistance against challenges with both bacteria. These results suggest that 5906 or its analogues/derivatives may be exploited for the development of broad-spectrum antibacterial agents applied in the prevention and control of fish bacterial diseases.

18.
Int J Biol Macromol ; 82: 76-82, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26522244

ABSTRACT

Cathepsin S is a member of cysteine cathepsins and belongs to the cathepsin L-like family. In mammals, it is known to participate in various physiological processes and host immune defense. In teleost fish, the function of cathepsin S is less investigated. In the present work, we characterized a cathepsin S homologue (SoCatS) from red drum (Sciaenops ocellatus), a commercially valuable fish in Chinese mariculture. Like all cathepsin S, SoCatS possesses a peptidase domain with four catalytically essential residues (Gln140, Cys146, His285, and Asn305) conserved in the cathepsin S of different organisms. SoCatS shares 60-90% overall sequence identities with known teleost cathepsin S. Phylogenetic profiling indicated that SoCatS is evolutionally close to the cathepsin S of other teleost fish, especially Miichthys miiuy, a member of Sciaenidae family like red drum. SoCatS expression was detected in various tissues and was enhanced by bacterial infection. Purified recombinant SoCatS exhibited apparent peptidase activity with maximum at 50°C and pH 7.5. This activity depended on the catalytic residue Cys146 and was severely reduced by the cathepsin inhibitor E-64. Our results suggest that SoCatS functions as a cysteine protease which is probably involved in the antibacterial immunity of red drum.


Subject(s)
Cathepsins/genetics , Cathepsins/metabolism , Fishes/genetics , Fishes/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cathepsins/chemistry , Cathepsins/isolation & purification , Cloning, Molecular , Enzyme Activation , Fishes/classification , Gene Expression , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Conformation , Proteolysis , Recombinant Proteins , Sequence Alignment , Sequence Analysis, DNA , Transcription, Genetic
19.
Fish Physiol Biochem ; 41(6): 1463-73, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26164862

ABSTRACT

Cathepsin L is a cysteine protease with a papain-like structure. It is known to be implicated in multiple processes of mammalian immune response to pathogen infection. In teleost fish, the functionality of cathepsin L is less understood. In this work, we characterized a cathepsin L homologue (designated as SoCatL) from red drum Sciaenops ocellatus, an important farmed fish species in China. SoCatL possesses a typical domain arrangement characteristic of cathepsin L, which comprises a proregion and a protease domain with four catalytically essential residues (Gln137, Cys143, His282 and Asn302) conserved in various organisms. SoCatL shares moderate sequence identities with mammalian cathepsin L and relatively high sequence identities with teleost cathepsin L. Phylogenetic analysis revealed that SoCatL is evolutionally close to fish cathepsin L, especially those belonging to the Perciformes order. The homology model of SoCatL was discovered to exhibit a structure resembling human cathepsin L. Transcriptional expression of SoCatL was found ubiquitous in tissues and enhanced after experimental infection with a bacterial pathogen. Recombinant SoCatL purified from Escherichia coli (designated as rSoCatL) displayed apparent proteolytic activity, which was optimal at 50 °C and pH 7.0. The activity of rSoCatL required the catalytic residue Cys143 and was severely reduced by cathepsin inhibitor. These results suggest that SoCatL is a teleost cathepsin L homologue which functions as a cysteine protease and is likely to participate in the host immune response against bacterial infection.


Subject(s)
Cathepsin L/metabolism , Fish Proteins/metabolism , Perciformes/metabolism , Amino Acid Sequence , Animals , Bacterial Infections/metabolism , Base Sequence , Cathepsin L/genetics , Cloning, Molecular , Fish Proteins/genetics , Gene Expression Profiling , Molecular Sequence Data , Perciformes/genetics , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
20.
Vet Microbiol ; 177(3-4): 332-40, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25899393

ABSTRACT

Edwardsiella tarda is a severe bacterial pathogen to a wide arrange of farmed fish. One salient virulent feature of E. tarda is a remarkable ability to survive in host serum. In this study, in order to identify E. tarda proteins involved in serum resistance, we conducted proteomic analysis to examine the extracellular protein profiles of TX01, a pathogenic E. tarda isolate, in response to serum treatment. Five differentially expressed proteins were identified, one of which was a putative zinc protease (named Sip1). Western blot confirmed extracellular production of Sip1 by E. tarda. Sequence analysis revealed that Sip1 possesses a conserved zinc metalloprotease motif and shares low homology with the putative zinc proteases/aureolysin of several bacterial species. Purified recombinant Sip1 (rSip1) exhibited zinc-dependent proteolytic activity that reached maximum at 40°C and pH 8. Compared to the wild type, the sip1 knockout mutant, TXΔsip1, was dramatically reduced in the ability to cause mortality in the host (Japanese flounder) and to survive in host serum. These lost virulence capacities of TXΔsip1 were restored by complementation with the sip1 gene. Further study showed that rSip1 enhanced the serum resistance of TX01 and TXΔsip1, whereas antibody blocking of the Sip1 produced naturally by TX01 impaired serum resistance. Vaccination study showed that rSip1 as a subunit vaccine was able to induce effective protection in flounder against E. tarda challenge. Taken together, these results indicate that Sip1 is a novel zinc metalloprotease that is essential to serum resistance and host infection.


Subject(s)
Edwardsiella tarda/enzymology , Enterobacteriaceae Infections/veterinary , Fish Diseases/microbiology , Flounder , Metalloproteases/metabolism , Animals , Bacterial Proteins , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Edwardsiella tarda/genetics , Edwardsiella tarda/immunology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Fish Diseases/immunology , Fisheries , Metalloendopeptidases , Metalloproteases/chemistry , Metalloproteases/genetics , Metalloproteases/immunology , Proteomics , Random Allocation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Seawater , Serum/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Virulence/genetics , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...