Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Environ Sci (China) ; 138: 326-338, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38135400

ABSTRACT

Developing industrially moldable catalysts with harmonized redox performance and acidity is of great significance for the efficient disposal of chlorinated volatile organic compounds (CVOCs) in actual exhaust gasses. Here, commercial TiO2, typically used for molding catalysts, was chosen as the carrier to fabricate a series of Ce0.02Mn0-0.24TiOx materials with different Mn doping ratios and employed for chlorobenzene (CB) destruction. The introduction of Mn remarkedly facilitated the synergistic effect of each element via the electron transfer processes: Ce3++Mn4+/3+↔Ce4++Mn3+/2+ and Mn4+/3++Ti4+↔Mn3+/2++Ti3+. These synergistic interactions in Ce0.02Mn0.04-0.24TiOx, especially Ce0.02Mn0.16TiOx, significantly elevated the active oxygen species, oxygen vacancies and redox properties, endowing the superior catalytic oxidation of CB. When the Mn doping amount increased to 0.24, a separate Mn3O4 phase appeared, which in turn might weaken the synergistic effect. Furthermore, the acidity of Ce0.02Mn0.04-0.24TiOx was decreased with the Mn doping, regulating the balance of redox property and acidity. Notably, Ce0.02Mn0.16TiOx featured relatively abundant B-acid sites. Its coordinating redox ability and moderate acidity promoted the deep oxidation of CB and RCOOH- intermediates, as well as the rapid desorption of Cl species, thus obtaining sustainable reactivity. In comparison, CeTiOx owned the strongest acidity, however, its poor redox property was not sufficient for the timely oxidative decomposition of the easier adsorbed CB, resulting in its rapid deactivation. This finding provides a promising strategy for the construction of efficient commercial molding catalysts to decompose the industrial-scale CVOCs.


Subject(s)
Oxides , Volatile Organic Compounds , Titanium , Manganese , Oxidation-Reduction , Catalysis
2.
J Hazard Mater ; 445: 130565, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-37055973

ABSTRACT

Accurate source apportionment is essential for preventing the contamination of pervasive industrial zones. However, a limitation of traditional receptor models is their negligence of transmission loss, which consequently reduces their accuracy. Herein, chemical mass balance (CMB) and generic environmental model (GEM) was fused into a new method, which was employed to determine the traceability of polycyclic aromatic hydrocarbons (PAHs) in a complex zone containing three coking plants, two steel plants, and one energy plant. Five categories of fingerprints comprising various compounds were established for the six plant sources where seven PAHs with low-high rings were screened as the best. Considering volatilization, dry deposition, and advective and dispersive transport, the GEM model generated 232 "compartments" in multimedia to capture subtle variations of PAHs during transmission. More than 90 % of the transmission of the seven PAHs varied between 0.4 % and 6.0 %. Over pure CMB model, acceptable results and best-fit results improved by 1.6-44.4 % and 0.3-80.8 % in the GEM-CMB model. Additionally, the coking, steel, and energy industries accounted for 36.4-56.1 %, 25.6-41.7 %, and 18.3-23.6 % of PAHs sources at four receptor points, respectively. Furthermore, quantifying contaminant loss rendered the traceability results more realistic, judged by distances and discharge capacities. Accordingly, these outcomes can help in precisely determining soil contamination.

3.
J Imaging ; 9(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36826971

ABSTRACT

LiDAR-based simultaneous localization and mapping (SLAM) and online localization methods are widely used in autonomous driving, and are key parts of intelligent vehicles. However, current SLAM algorithms have limitations in map drift and localization algorithms based on a single sensor have poor adaptability to complex scenarios. A SLAM and online localization method based on multi-sensor fusion is proposed and integrated into a general framework in this paper. In the mapping process, constraints consisting of normal distributions transform (NDT) registration, loop closure detection and real time kinematic (RTK) global navigation satellite system (GNSS) position for the front-end and the pose graph optimization algorithm for the back-end, which are applied to achieve an optimized map without drift. In the localization process, the error state Kalman filter (ESKF) fuses LiDAR-based localization position and vehicle states to realize more robust and precise localization. The open-source KITTI dataset and field tests are used to test the proposed method. The method effectiveness shown in the test results achieves 5-10 cm mapping accuracy and 20-30 cm localization accuracy, and it realizes online autonomous driving in complex scenarios.

4.
ACS Omega ; 7(48): 44251-44265, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36506185

ABSTRACT

To investigate the effect of fuel physicochemical properties on spray and particulate emissions, fuel spray characteristics were tested on a constant volume chamber (CVC) test rig using a high-speed camera method to investigate the effect of different injection and ambient pressures on spray characteristics. In the engine bench tests, the effects of particulate emissions from five different diesel fuels with different physicochemical properties were analyzed under low-, medium-, and high-load steady-state conditions and 5 s transient loading conditions. The test results showed that the spray tip penetration of different CNs results from the combined effect of the fuel properties. The spray cone angle of the five fuels increased with the increase of injection and ambient pressure, and the impact of ambient pressure on the spray cone angle was more prominent. Spray tip penetration and spray projection area increase with increased injection pressure and decrease with increased ambient pressure; compared with spray tip penetration, the spray cone angle has more influence on spray projection area, especially near-field spray cone angle as the primary influence factor. Fuels with different ignition characteristics have other effects on particulates at different loads. At low loads, choosing CN = 55.3 fuel improved the number and mass of particulates; at medium and high loads, choosing CN = 51 fuel reduced the number of particulate emissions. Fuels with different volatilities have different effects on particulates at other loads. At low loads, CN = 54.9 fuel was chosen with moderate volatility and aromatic content. At medium and high loads, the volatility of the fuel had a lower weight on particulates, and the aromatic content had a higher weight. Under the transient loading condition of 5 s, using fuel with a higher CN, good volatility, and lower aromatic content can appropriately reduce the number of particulate emissions.

5.
ACS Omega ; 7(50): 46550-46563, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36570291

ABSTRACT

The effects of cetane number (CN) coupled with pilot injection ratio and pilot injection timing on the combustion and emission characteristics of a four-cylinder diesel engine were investigated. The results showed that as the pilot injection ratio increases, the peak cylinder gas pressure (CGP) increases, and the peak of heat release rate (HRR) increases accordingly; the coupled CN increases, the brake specific fuel consumption (BSFC) decreases, and the brake thermal efficiency (BTE) increases; CO and HC emissions increase; and NO x emissions increase. In addition, the number concentration and total mass of particulate matter (PM) decrease with the increasing pilot injection ratio. Only when the pilot injection ratio reaches 20% does the fuel produce pilot injection heat release. The ignition delay time (ID) and combustion duration (CD) are redefined for the pilot injection heat release operating conditions. With the delay of the pilot injection timing, the peak CGP increases, the coupled CN increases, the BTE increases, the BSFC decreases, CO and HC emissions increase, and NO x emissions decrease. With the delay of the pilot injection timing, the number concentration and total mass of PM decrease. In addition, no pilot injection heat release was generated for any of the five fuels at pilot injection timings from 30°CA BTDC to 45°CA BTDC.

6.
Bioinspir Biomim ; 18(1)2022 11 16.
Article in English | MEDLINE | ID: mdl-36322985

ABSTRACT

The biomimetic design of engineering structures is based on biological structures with excellent mechanical properties, which are the result of billions of years of evolution. However, current biomimetic structures, such as ordered lattice materials, are still inferior to many biomaterials in terms of structural complexity and mechanical properties. For example, the structure ofEuplectella aspergillum, a type of deep-sea glass sponge, is an eye-catching source of inspiration for biomimetic design, many researches have introduced similar architecture in cellular solids. However, guided by scientific theory, how to surpass the mechanical properties ofE. aspergillumremains an unsolved problem. We proposed the lattice structure which firstly surpass theE. aspergillummechanically. The lattice structure of the skeleton ofE. aspergillumconsists of vertically, horizontally, and diagonally oriented struts, which provide superior strength and flexural resistance compared with the conventional square lattice structure. Herein, the structure ofE. aspergillumwas investigated in detail, and by using the theory of elasticity, a lattice structure inspired by the biomimetic structure was proposed. The mechanical properties of the sponge-inspired lattice structure surpassed the sponge structure under a variety of loading conditions, and the excellent performance of this configuration was verified experimentally. The proposed lattice structure can greatly improve the mechanical properties of engineering structures, and it improves strength without much redundancy of material. This study achieved the first surpassing of the mechanical properties of an existing sponge-mimicking design. This design can be applied to lattice structures, truss systems, and metamaterial cells.


Subject(s)
Biocompatible Materials , Glass , Biocompatible Materials/chemistry , Flexural Strength , Elasticity , Biomimetics
7.
Sensors (Basel) ; 22(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36366091

ABSTRACT

The testing and evaluation system has been the key technology and security with its necessity in the development and deployment of maturing automated vehicles. In this research, the physics-intelligence hybrid theory-based dynamic scenario library generation method is proposed to improve system performance, in particular, the testing efficiency and accuracy for automated vehicles. A general framework of the dynamic scenario library generation is established. Then, the parameterized scenario based on the dimension optimization method is specified to obtain the effective scenario element set. Long-tail functions for performance testing of specific ODD are constructed as optimization boundaries and critical scenario searching methods are proposed based on the node optimization and sample expansion methods for the low-dimensional scenario library generation and the reinforcement learning for the high-dimensional one, respectively. The scenario library generation method is evaluated with the naturalistic driving data (NDD) of the intelligent electric vehicle in the field test. Results show better efficient and accuracy performances compared with the ideal testing library and the NDD, respectively, in both low- and high-dimensional scenarios.


Subject(s)
Automobile Driving , Autonomous Vehicles , Electricity , Physics , Intelligence
8.
J Mech Behav Biomed Mater ; 136: 105459, 2022 12.
Article in English | MEDLINE | ID: mdl-36302273

ABSTRACT

The cuttlebone structure is a complex porous bionic structure with an asymmetric S-shaped wall structure connecting laminar septa. Studies have shown that the cuttlebone structure has a low weight, high strength, and excellent energy absorption capability. To establish bio-inspired structures with superior biological functions, researchers have proposed the sinusoidally corrugated cuttlebone-like array structure (SCS). In this study, referring to Euler's theory combined with the Gaussian curvature, the effects of the thickness t, height H, amplitude A, and period P of the SCS under compressive shearing were analyzed. Through finite element calculations and parameter sensitivity analysis, the optimized Su4-Sl2 SCS was obtained. Based on the optimization results, a structure named the elliptical corrugated cuttlebone-like array structure (ECS) was designed. Various ECSs were prepared via three-dimensional (3D) printing, and the compression and shear deformation characteristics of the ECSs were analyzed through experiments and simulations. The results showed that the bearing capacities of the new ECSs were improved compared with those of SCSs; moreover, Eu60-El90, Eu60-El60, and Eu60-El60 ECSs had the best compressive and shear capacities. From the perspective of the stress, the peak compression, peak shear stress in the y-direction, and peak shear stress in the x-direction were increased by 14.2%, 32.8%, and 14.9%, respectively. From the perspective of the energy, the compressive strain energy, shear strain energy in the y-direction, and shear strain energy in the x-direction were increased by 22.8%, 33.0%, and 78.1%, respectively.


Subject(s)
Stress, Mechanical , Porosity , Pressure
9.
Environ Sci Technol ; 56(22): 16292-16302, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36168671

ABSTRACT

Catalytic combustion of ubiquitous chlorinated volatile organic compounds (CVOCs) encounters bottlenecks regarding catalyst deactivation by chlorine poisoning and generation of toxic polychlorinated byproducts. Herein, Ru, Pd, and Rh were loaded on {001}-TiO2 for thermal catalytic oxidation of chlorobenzene (CB), with Ru/{001}-TiO2 representing superior reactivity, CO2 selectivity, and stability in the 1000 min on-stream test. Interestingly, both acid sites and reactive active oxygen species (ROS) were remarkably promoted via adding NaBH4. But merely enhancing these active sites of the catalyst in CVOC treatment is insufficient. Continuous deep oxidation of CB with effective Cl desorption is also a core issue successfully tackled through the steady Ru0↔Ru4+ circulation. This circulation was facilitated by the observed higher subnanometer Ru dispersion on {001}-TiO2 than the other two noble metals that was supported by single atom stability DFT calculation. Nearly 88 degradation products in off-gas were detected, with Ru/{001}-TiO2 producing the lowest polychlorinated benzene byproducts. An effective and sustainable CB degradation mechanism boosted by the cooperation of NaBH4 enhanced active sites and Ru circulation was proposed accordingly. Insights gained from this study open a new avenue to the rational design of promising catalysts for the treatment of CVOCs.

10.
Polymers (Basel) ; 14(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35808779

ABSTRACT

Poly(lactic acid) (PLA) is an emerging plastic that has insufficient properties (e.g., it is too brittle) for widespread commercial use. Previous research results have shown that the strength and toughness of basalt fiber reinforced PLA composites (PLA/BF) still need to be improved. To address this limitation, this study aimed to obtain an effective compatibilizer for PLA/BF. Melt-blending of poly(butylene adipate-co-terephthalate) (PBAT) with PLA in the presence of 4,4'-methylene diphenyl diisocyanate (MDI: 0.5 wt% of the total resin) afforded PLA/PBAT-MDI triblock copolymers. The triblock copolymers were melt-blended to improve the interfacial adhesion of PLA/BF and thus obtain excellent performance of the PLA-ternary polymers. This work presents the first investigation on the effects of PLA/PBAT-MDI triblock copolymers as compatibilizers for PLA/BF blends. The resultant mechanics, the morphology, interface, crystallinity, and thermal stability of the PLA-bio polymers were comprehensively examined via standard characterization techniques. The crystallinity of the PLA-ternary polymers was as high as 43.6%, 1.44× that of PLA/BF, and 163.5% higher than that of pure PLA. The stored energy of the PLA-ternary polymers reached 20,306.2 MPa, 5.5× than that of PLA/BF, and 18.6× of pure PLA. Moreover, the fatigue life of the PLA-ternary polymers was substantially improved, 5.85× than that of PLA/PBAT-MDI triblock copolymers. Thus, the PLA/PBAT-MDI triblock copolymers are compatibilizers that improve the mechanical properties of PLA/BF.

11.
Sci Rep ; 12(1): 4074, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260786

ABSTRACT

Surface buckling behaviors of thin-film soft-substrate bilayers have important research value. Recent research has focused on bilayers with infinite-thickness substrates. However, bilayers with finite-thickness substrates widely exist. To study this problem more comprehensively, we extended the stability theory of a beam on an elastic foundation to bilayers and then established a finite element method of bilayers using the neo-Hookean hyperelastic constitutive model. A self-contact analysis method was coupled to the finite element method so that the further buckling evolution of the film surface after folding could be simulated. Based on our analysis of various modulus ratios and thickness ratios, the evolution of the buckling path was significantly influenced by the thickness ratio. Without considering the situation of a prestressed substrate, four new buckling paths were found. Thus, we extended the single buckling path (under infinite thickness substrate) to five types. Our study also found that for path four, the substrate with a certain thickness exhibited a special final stable surface morphology. That is, regardless of the friction, a new periodic morphology after film folding appeared due to the contact slip of the film surface. Finally, further analysis showed that these five buckling paths were all dependent on different modulus ratios and thickness ratios.

12.
Environ Pollut ; 265(Pt A): 114908, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32540566

ABSTRACT

Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.


Subject(s)
Environmental Pollutants , Humans , Kinetics
13.
J Environ Sci (China) ; 93: 1-12, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32446444

ABSTRACT

Volatile organic compounds (VOCs) are major contributors to air pollution. Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing, the environmental impact and health risk of VOC were assessed. In the winter polluted days, the secondary organic aerosol formation potential (SOAP) of VOC (199.70 ± 15.05 µg/m3) was significantly higher than that on other days. And aromatics were the primary contributor (98.03%) to the SOAP during the observation period. Additionally, the result of the ozone formation potential (OFP) showed that ethylene contributed the most to OFP in winter (26.00% and 27.64% on the normal and polluted days). In summer, however, acetaldehyde was the primary contributor to OFP (22.00% and 21.61% on the normal and polluted days). Simultaneously, study showed that hazard ratios and lifetime cancer risk values of acrolein, chloroform, benzene, 1,2-dichloroethane, acetaldehyde and 1,3-butadiene exceeded the thresholds established by USEPA, thereby presenting a health risk to the residents. Besides, the ratio of toluene-to-benzene indicated that vehicle exhausts were the main source of VOC pollution in Beijing. The ratio of m-/p-xylene-to-ethylbenzene demonstrated that there were more prominent atmospheric photochemical reactions in summer than that in winter. Finally, according to the potential source contribution function (PSCF) results, compared with local pollution sources, the spread of pollution from long-distance VOCs had a greater impact on Beijing.


Subject(s)
Air Pollutants/analysis , Ozone/analysis , Volatile Organic Compounds/analysis , Beijing , China , Environmental Monitoring , Risk Assessment , Seasons , Vehicle Emissions/analysis
14.
Sci Total Environ ; 721: 137747, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32179348

ABSTRACT

Understanding the photochemical reaction process between VOCs and co-pollutants in the troposphere is crucial for controlling the haze. The photochemical reactions of 1,3-butadiene (1,3-BD) with NO were carried out at 308 K for up to 96 h in clean air with various relative humidity (RH) values, and actual haze atmosphere. In the haze, the representative pseudo-first-order kinetic rate constants of the 1,3-BD-NO system was 1.53 time higher than those in dry clean air. The effect of the RH (0%-80%) on the conversion behavior of the 1,3-BD-NO system in clean air was studied, revealing that increasing RH promoted the photochemical reaction in the low range of 0%-40% but retarded it in the high range of 40%-80%. Interestingly, OH radicals were directly detected under different RH values, and the strongest OH signal was obtained at an RH of 40%. Multiple macromolecular products with carbon numbers of 10-36 were identified. Unexpectedly, richer products and extended unsaturation range were detected at an RH of 40% than 0%. The photochemical products were also analyzed using ion chromatography. A reaction mechanism was proposed from the detected NO2, O3, OH, HNO2, HNO3, organic acids and macromolecular products.

15.
Sci Total Environ ; 720: 137536, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32145623

ABSTRACT

In recent years, PM2.5 and O3 pollutions are prevalent in the atmosphere in Beijing. The study on pollution characteristics of VOC, which are important precursors of O3 and secondary organic aerosols (SOA) contributing PM2.5, is of great significance for providing a reference to guide its reduction policy formulation. Herein, the seasonal variation of atmospheric VOCs and meteorological conditions at the sampling frequency of 1 time per hour were continuously measured from March 2016 to January 2017 in Beijing. Using the collected data combined with multiple models, the role of VOCs in SOA and O3 production was investigated. Alkanes were the most abundant species, contributing 54.1-64.7% of the total VOC concentration for four seasons, followed by aromatics, alkenes and acetylene. The SOA potential (SOAP) was highest in winter at 2885.1 µg m-3, followed by autumn, spring and summer. Aromatics were the main contributors to SOAP, accounting for ~98.2% of the total SOAP during the entire observation period. The empirical kinetic modeling approach results showed that O3 production featured the VOC-limited regime in Beijing. Alkenes and aromatics were major contributors to O3 formation potential (OFP), accounting for 33.1-45.6% and 27.2-45.2%, respectively, particularly ethylene and m,p-xylene. Positive matrix factorization results indicated that motor vehicle exhaust was still the largest local source of VOCs, but its proportion was considerably reduced. The potential source contribution function results revealed that regional transport sources of VOC pollution in Beijing mainly came from the northwest and southern areas. Thus, to control PM2.5 and O3 pollution in Beijing, the restriction of alkenes and aromatics emission, accompanied by regional cooperation combined with local control, is essential.

SELECTION OF CITATIONS
SEARCH DETAIL
...