Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Nat Commun ; 15(1): 4485, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802355

ABSTRACT

Although Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) have been approved in multiple diseases, including BRCA1/2 mutant breast cancer, responses are usually transient requiring the deployment of combination therapies for optimal efficacy. Here we thus explore mechanisms underlying sensitivity and resistance to PARPi using two intrinsically PARPi sensitive (T22) and resistant (T127) syngeneic murine breast cancer models in female mice. We demonstrate that tumor associated macrophages (TAM) potentially contribute to the differential sensitivity to PARPi. By single-cell RNA-sequencing, we identify a TAM_C3 cluster, expressing genes implicated in anti-inflammatory activity, that is enriched in PARPi resistant T127 tumors and markedly decreased by PARPi in T22 tumors. Rps19/C5aR1 signaling is selectively elevated in TAM_C3. C5aR1 inhibition or transferring C5aR1hi cells increases and decreases PARPi sensitivity, respectively. High C5aR1 levels in human breast cancers are associated with poor responses to immune checkpoint blockade. Thus, targeting C5aR1 may selectively deplete pro-tumoral macrophages and engender sensitivity to PARPi and potentially other therapies.


Subject(s)
Breast Neoplasms , Drug Resistance, Neoplasm , Poly(ADP-ribose) Polymerase Inhibitors , Receptor, Anaphylatoxin C5a , Tumor-Associated Macrophages , Animals , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Humans , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Cell Line, Tumor , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/metabolism , Receptor, Anaphylatoxin C5a/genetics , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Macrophages/metabolism , Macrophages/drug effects
2.
Nat Aging ; 4(4): 527-545, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38594460

ABSTRACT

Limited understanding exists regarding how aging impacts the cellular and molecular aspects of the human ovary. This study combines single-cell RNA sequencing and spatial transcriptomics to systematically characterize human ovarian aging. Spatiotemporal molecular signatures of the eight types of ovarian cells during aging are observed. An analysis of age-associated changes in gene expression reveals that DNA damage response may be a key biological pathway in oocyte aging. Three granulosa cells subtypes and five theca and stromal cells subtypes, as well as their spatiotemporal transcriptomics changes during aging, are identified. FOXP1 emerges as a regulator of ovarian aging, declining with age and inhibiting CDKN1A transcription. Silencing FOXP1 results in premature ovarian insufficiency in mice. These findings offer a comprehensive understanding of spatiotemporal variability in human ovarian aging, aiding the prioritization of potential diagnostic biomarkers and therapeutic strategies.


Subject(s)
Forkhead Transcription Factors , Ovary , Animals , Female , Humans , Mice , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Granulosa Cells/metabolism , Oocytes/metabolism , Ovary/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Aging/genetics
3.
Nat Commun ; 15(1): 3131, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605012

ABSTRACT

Reconciling the dilemma between rapid degradation and overdose toxicity is challenging in biodegradable materials when shifting from bulk to porous materials. Here, we achieve significant bone ingrowth into Zn-based porous scaffolds with 90% porosity via osteoinmunomodulation. At microscale, an alloy incorporating 0.8 wt% Li is employed to create a eutectoid lamellar structure featuring the LiZn4 and Zn phases. This microstructure optimally balances high strength with immunomodulation effects. At mesoscale, surface pattern with nanoscale roughness facilitates filopodia formation and macrophage spreading. At macroscale, the isotropic minimal surface G unit exhibits a proper degradation rate with more uniform feature compared to the anisotropic BCC unit. In vivo, the G scaffold demonstrates a heightened efficiency in promoting macrophage polarization toward an anti-inflammatory phenotype, subsequently leading to significantly elevated osteogenic markers, increased collagen deposition, and enhanced new bone formation. In vitro, transcriptomic analysis reveals the activation of JAK/STAT pathways in macrophages via up regulating the expression of Il-4, Il-10, subsequently promoting osteogenesis.


Subject(s)
Osteogenesis , Tissue Scaffolds , Osteogenesis/physiology , Tissue Scaffolds/chemistry , Porosity , Printing, Three-Dimensional , Zinc/pharmacology
5.
Nat Genet ; 56(4): 637-651, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565644

ABSTRACT

Endometrial carcinoma remains a public health concern with a growing incidence, particularly in younger women. Preserving fertility is a crucial consideration in the management of early-onset endometrioid endometrial carcinoma (EEEC), particularly in patients under 40 who maintain both reproductive desire and capacity. To illuminate the molecular characteristics of EEEC, we undertook a large-scale multi-omics study of 215 patients with endometrial carcinoma, including 81 with EEEC. We reveal an unexpected association between exposome-related mutational signature and EEEC, characterized by specific CTNNB1 and SIGLEC10 hotspot mutations and disruption of downstream pathways. Interestingly, SIGLEC10Q144K mutation in EEECs resulted in aberrant SIGLEC-10 protein expression and promoted progestin resistance by interacting with estrogen receptor alpha. We also identified potential protein biomarkers for progestin response in fertility-sparing treatment for EEEC. Collectively, our study establishes a proteogenomic resource of EEECs, uncovering the interactions between exposome and genomic susceptibilities that contribute to the development of primary prevention and early detection strategies for EEECs.


Subject(s)
Carcinoma, Endometrioid , Endometrial Hyperplasia , Endometrial Neoplasms , Fertility Preservation , Proteogenomics , Humans , Female , Progestins/therapeutic use , Antineoplastic Agents, Hormonal , Endometrial Hyperplasia/drug therapy , Fertility Preservation/methods , Retrospective Studies , Carcinoma, Endometrioid/drug therapy , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
6.
Small ; : e2400010, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470199

ABSTRACT

Rechargeable Li-O2 batteries (LOBs) are considered as one of the most promising candidates for new-generation energy storage devices. One of major impediments is the poor cycle stability derived from the sluggish reaction kinetics of unreliable cathode catalysts, hindering the commercial application of LOBs. Therefore, the rational design of efficient and durable catalysts is critical for LOBs. Optimizing surface electron structure via the negative shift of the d-band center offers a reasonable descriptor for enhancing the electrocatalytic activity. In this study, the construction of Ni-incorporating RuO2 porous nanospheres is proposed as the cathode catalyst to demonstrate the hypothesis. Density functional theory calculations reveal that the introduction of Ni atoms can effectively modulate the surface electron structure of RuO2 and the adsorption capacities of oxygen-containing intermediates, accelerating charge transfer between them and optimizing the growth pathway of discharge products. Resultantly, the LOBs exhibit a large discharge specific capacity of 19658 mA h g-1 at 200 mA g-1 and extraordinary cycle life of 791 cycles. This study confers the concept of d-band center modulation for efficient and durable cathode catalysts of LOBs.

7.
Nat Commun ; 15(1): 2089, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453961

ABSTRACT

Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.


Subject(s)
Hyperthermia, Induced , Ovarian Neoplasms , Female , Humans , CDC2 Protein Kinase/metabolism , Cell Cycle Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Multiomics , Mitosis , Ovarian Neoplasms/therapy , Ovarian Neoplasms/pathology
8.
Eur J Surg Oncol ; 50(4): 108261, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484494

ABSTRACT

INTRODUCTION: The prognostic value of lymph-vascular space invasion (LVSI) on endometrial cancer (EC) remains controversial. This study aimed to explore the impact of LVSI on patients with endometrioid and non-endometrioid EC in China. MATERIALS AND METHODS: We analyzed EC patients who underwent surgery from 2010 to 2019 in seven Chinese hospitals retrospectively and stratified patients based on histopathologic types and LVSI status. Endpoints were disease-free survival (DFS) and overall survival (OS). Propensity score matching (PSM) algorithm was used to balance the confounding factors. The survival was examined using Kaplan-Meier analysis. Cox proportional hazards regression analyses were used to find prognostic independent risk factors. RESULTS: Among 3715 EC patients, LVSI positive rate was 9.31% (346/3715). After matching, LVSI present group had shorter DFS (P = 0.005), and similar OS (P = 0.656) than LVSI absent group for endometrioid EC patients. For non-endometrioid EC patients, there was no statistical difference in either DFS (P = 0.536) or OS (P = 0.512) after matching. The multivariate Cox analysis showed that LVSI was an independent risk factor of DFS [hazard ratio (HR) 2.62, 95% confidence intervals (CI) 1.35-5.10, P = 0.005] and not OS (HR 1.24, 95%CI 0.49-3.13, P = 0.656) for endometrioid EC patients. It was not a prognostic factor of either DFS (HR 1.28, 95%CI 0.58-2.81, P = 0.539) or OS (HR 1.33, 95%CI 0.55-3.13, P = 0.515) for non-endometrioid EC patients. CONCLUSION: LVSI is an adverse prognostic factor for endometrioid EC patients and has no impact on non-endometrioid EC patients. Necessity of postoperative adjuvant therapy based on LVSI needs to be carefully considered for non-endometrioid EC patients.


Subject(s)
Carcinoma, Endometrioid , Endometrial Neoplasms , Female , Humans , Prognosis , Retrospective Studies , Carcinoma, Endometrioid/surgery , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/pathology , Proportional Hazards Models , Neoplasm Staging
9.
Cancer Pathog Ther ; 2(1): 38-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38328710

ABSTRACT

Background: Immunotherapy favors patients with tumors; however, only 3-26.3% of patients with cervical cancer benefit from single-agent immune checkpoint inhibitors. Combined immunotherapy and chemotherapy has been explored against tumor; however, the combination remains controversial. This study aimed to investigate the tumor immune microenvironment (TIME) and the effects of platinum-based neoadjuvant chemotherapy (NACT) in cervical cancer to identify the clinical value of combining chemotherapy with immunotherapy. Methods: Multiplex immunohistochemistry (IHC) with 11 markers (cluster of differentiation [CD]3, CD8, CD4, CD11c, CD68, forkhead box P3 [Foxp3], programmed cell death 1 [PD-1], programmed cell death 1 ligand 1 [PD-L1], indoleamine 2,3-dioxygenase [IDO], cyclin-dependent kinase inhibitor 2A [p16], and cytokeratin [CK]) was performed to evaluate TIME from 108 matched pre- and post-NACT cervical cancer samples. The mechanism of antitumor immunity triggered by NACT was explored using RNA sequencing (RNA-seq) from four paired samples and subsequently verified in 41 samples using IHC. Results: The infiltration rate of the CD8+ T cells in treatment-naive cervical cancer was 0.73%, and those of Foxp3+ regulatory T cells (Tregs) and IDO+ cells were 0.87% and 17.15%, respectively. Moreover, immunoreactive T cells, dendritic cells, and macrophages were more in the stromal than the intratumor region. NACT increased dendritic, CD3+ T, CD8+ T, and CD4+ T cells and decreased Tregs. The aforementioned alterations occurred predominantly in the stromal region and were primarily in responders. Non-responders primarily showed decreased Tregs and no increase in CD8+ T or dendritic cell infiltration. Furthermore, dendritic cells interacted more closely with CD3+ T cells after NACT, an effect primarily observed in responders. RNA-seq data revealed activation of the antigen receptor-mediated signaling pathway and upregulation of major histocompatibility complex (MHC) I and MHC II after chemotherapy, validated using IHC. Conclusions: NACT can reduce Tregs, and when tumor cells are effectively killed, antigen presentation is enhanced, subsequently activating antitumor immunity finitely. Our study provides the molecular characteristics and theoretical basis for the simultaneous or sequential combination of platinum-based NACT and immunotherapy for cervical cancer.

10.
Adv Sci (Weinh) ; 11(12): e2302340, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38229169

ABSTRACT

The lack of human-derived in vitro models that recapitulate cervical pre-cancerous lesions has been the bottleneck in researching human papillomavirus (HPV) infection-associated pre-cancerous lesions and cancers for a long time. Here, a long-term 3D organoid culture protocol for high-grade squamous intraepithelial lesions and cervical squamous cell carcinoma that stably recapitulates the two tissues of origin is described. Originating from human-derived samples, a small biobank of cervical pre-tumoroids and tumoroids that faithfully retains genomic and transcriptomic characteristics as well as the causative HPV genome is established. Cervical pre-tumoroids and tumoroids show differential responses to common chemotherapeutic agents and grow differently as xenografts in mice. By coculture organoid models with peripheral blood immune cells (PBMCs) stimulated by HPV antigenic peptides, it is illustrated that both organoid models respond differently to immunized PBMCs, supporting organoids as reliable and powerful tools for studying virus-specific T-cell responses and screening therapeutic HPV vaccines. In this study, a model of cervical pre-cancerous lesions containing HPV is established for the first time, overcoming the bottleneck of the current model of human cervical pre-cancerous lesions. This study establishes an experimental platform and biobanks for in vitro mechanistic research, therapeutic vaccine screening, and personalized treatment for HPV-related cervical diseases.


Subject(s)
Carcinoma, Squamous Cell , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Animals , Mice , Uterine Cervical Neoplasms/pathology , Papillomaviridae/genetics , Gene Expression Profiling
11.
Lancet Oncol ; 25(1): 76-85, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048802

ABSTRACT

BACKGROUND: Locally advanced cervical cancer constitutes around 37% of cervical cancer cases globally and has a poor prognosis due to limited therapeutic options. Immune checkpoint inhibitors in the neoadjuvant setting could address these challenges. We aimed to investigate the efficacy and safety of neoadjuvant chemo-immunotherapy for locally advanced cervical cancer. METHODS: In this single-arm, phase 2 trial, which was done across eight tertiary hospitals in China, we enrolled patients aged 18-70 years with untreated cervical cancer (IB3, IIA2, or IIB/IIIC1r with a tumour diameter ≥4 cm [International Federation of Gynecology and Obstetrics, 2018]) and an Eastern Cooperative Oncology Group performance status of 0 or 1. Eligible patients underwent one cycle of priming doublet chemotherapy (75-80 mg/m2 cisplatin, intravenously, plus 260 mg/m2 nab-paclitaxel, intravenously), followed by two cycles of a combination of chemotherapy (cisplatin plus nab-paclitaxel) on day 1 with camrelizumab (200 mg, intravenously) on day 2, with a 3-week interval between treatment cycles. Patients with stable disease or progressive disease received concurrent chemoradiotherapy, and patients with a complete response or partial response proceeded to radical surgery. The primary endpoint was the objective response rate, by independent central reviewer according to Response Evaluation Criteria in Solid Tumours, version 1.1. Activity and safety were analysed in patients who received at least one dose of camrelizumab. This study is registered with ClinicalTrials.gov, NCT04516616, and is ongoing. FINDINGS: Between Dec 1, 2020, and Feb 10, 2023, 85 patients were enrolled and all received at least one dose of camrelizumab. Median age was 51 years (IQR 46-57) and no data on race or ethnicity were collected. At data cutoff (April 30, 2023), median follow-up was 11·0 months (IQR 6·0-14·5). An objective response was noted in 83 (98% [95% CI 92-100]) patients, including 16 (19%) patients who had a complete response and 67 (79%) who had a partial response. The most common grade 3-4 treatment-related adverse events during neoadjuvant chemo-immunotherapy were lymphopenia (21 [25%] of 85), neutropenia (ten [12%]), and leukopenia (seven [8%]). No serious adverse events or treatment-related deaths occurred. INTERPRETATION: Neoadjuvant chemo-immunotherapy showed promising antitumour activity and a manageable adverse event profile in patients with locally advanced cervical cancer. The combination of neoadjuvant chemo-immunotherapy with radical surgery holds potential as a novel therapeutic approach for locally advanced cervical cancer. FUNDING: National Key Technology Research and Development Program of China and the National Clinical Research Center of Obstetrics and Gynecology.


Subject(s)
Thrombocytopenia , Uterine Cervical Neoplasms , Female , Humans , Middle Aged , Cisplatin/adverse effects , Neoadjuvant Therapy/adverse effects , Uterine Cervical Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/adverse effects , Thrombocytopenia/chemically induced , Antineoplastic Combined Chemotherapy Protocols/adverse effects
12.
Adv Healthc Mater ; 13(4): e2302305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37843190

ABSTRACT

Zinc (Zn) plays a crucial role in bone metabolism and imbues biodegradable Zn-based materials with the ability to promote bone regeneration in bone trauma. However, the impact of Zn biodegradation on bone repair, particularly its influence on angiogenesis, remains unexplored. This study reveals that Zn biodegradation induces a consistent dose-dependent spatiotemporal response in angiogenesis,both in vivo and in vitro. In a critical bone defect model, an increase in Zn release intensity from day 3 to 10 post-surgery is observed. By day 10, the CD31-positive area around the Zn implant significantly surpasses that of the Ti implant, indicating enhanced angiogenesis. Furthermore,angiogenesis exhibits a distance-dependent pattern closely mirroring the distribution of Zn signals from the implant. In vitro experiments demonstrate that Zn extraction fosters the proliferation and migration of human umbilical vein endothelial cells and upregulates the key genes associated with tube formation, such as HIF-1α and VEGF-A, peaking at a concentration of 22.5 µM. Additionally, Zn concentrations within the range of 11.25-45 µM promote the polarization of M0-type macrophages toward the M2-type, while inhibiting polarization toward the M1-type. These findings provide essential insights into the biological effects of Zn on bone repair, shedding light on its potential applications.


Subject(s)
Angiogenesis , Zinc , Humans , Zinc/pharmacology , Neovascularization, Physiologic , Bone Regeneration , Human Umbilical Vein Endothelial Cells/metabolism , Osteogenesis
13.
Biomater Res ; 27(1): 129, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38072947

ABSTRACT

BACKGROUND: The regulation of dose-dependent biological effects induced by biodegradation is a challenge for the production of biodegradable bone-substitute materials, especially biodegradable zinc (Zn) -based materials. Cytotoxicity caused by excess local Zn ions (Zn2+) from degradation is one of the factors limiting the wide application of Zn implants. Given that previous studies have revealed that delayed degradation of Zn materials by surface modification does not reduce cytotoxicity; in the present study, we explore whether preventing the entry of excess Zn2+ into cells may can reduce local Zn toxicity by applying Psoralen (PRL) to Zn implants and assessing its ability to regulate intracellular Zn2+ concentrations. METHODS: The effects of different concentrations of Zn2+ on cellular activity and cytotoxicity were investigated; briefly, we identified natural compounds that regulate Zn transporters, thereby regulating the concentrations of intracellular Zn2+, and applied them to Zn materials. Of these materials, PRL, a natural, tricyclic, coumarin-like aromatic compound that promotes the proliferation and differentiation of osteoblasts and enhances osteogenic activity, was loaded onto the surface of a Zn material using peptides and chitosan (CS), and the surface characteristics, electrochemical properties, and activity of the modified Zn material were evaluated. In addition, the ability of Zn + CS/pPRL implants to promote bone formation and accelerate large-scale bone defect repairs was assessed both in vitro and in vivo. RESULTS: We determined that 180 µM Zn2+ significantly induced pre-osteoblast cytotoxicity, and a 23-fold increase in Zrt- and Irt-like protein 4 (ZIP4) expression. We also found that PRL dynamically regulates the expression of ZIP4 in response to Zn2+ concentration. To address the problem of cytotoxicity caused by excessive Zn2+ in local Zn implants, PRL was loaded onto the surface of Zn implants in vivo using peptides and CS, which dynamically regulated ZIP4 levels, maintained the balance of intracellular Zn2+ concentrations, and enhanced the osteogenic activity of Zn implants. CONCLUSIONS: This study reveals the importance of Zn2+ concentration when using Zn materials to promote bone formation and introduces a natural active ingredient, PRL, that can regulate intracellular Zn2+ levels, and thus may be clinically applicable to Zn implants for the treatment of critical bone defects.

14.
Cell Death Dis ; 14(11): 775, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012150

ABSTRACT

Ovarian cancer is resistant to immune checkpoint blockade (ICB) treatment. Combination of targeted therapy and immunotherapy is a promising strategy for ovarian cancer treatment benefit from an improved immune microenvironment. In this study, Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) cohorts were used to screen prognosis and cytotoxic lymphocyte infiltration-associated genes in upregulated genes of ovarian cancer, tissue microarrays were built for further verification. In vitro experiments and mouse (C57/BL6) ovarian tumor (ID8) models were built to evaluate the synergistic effect of the combination of SF3B1 inhibitor and PD-L1 antibody in the treatment of ovarian cancer. The results show that SF3B1 is shown to be overexpressed and related to low cytotoxic immune cell infiltration in ovarian cancer. Inhibition of SF3B1 induces pyroptosis in ovarian cancer cells and releases mitochondrial DNA (mtDNA), which is englobed by macrophages and subsequently activates them (polarization to M1). Moreover, pladienolide B increases cytotoxic immune cell infiltration in the ID8 mouse model as a SF3B1 inhibitor and increases the expression of PD-L1 which can enhance the antitumor effect of αPDL1 in ovarian cancer. The data suggests that inhibition of SF3B1 improves the immune microenvironment of ovarian cancer and synergizes ICB immunotherapy, which provides preclinical evidence for the combination of SF3B1 inhibitor and ICB to ovarian cancer treatment.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Animals , Mice , Female , B7-H1 Antigen/metabolism , Pyroptosis , Proteomics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Immunotherapy/methods , Tumor Microenvironment , RNA Splicing Factors , Phosphoproteins/metabolism
15.
Nat Genet ; 55(12): 2175-2188, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37985817

ABSTRACT

Cervical squamous cell carcinoma (CSCC) exhibits a limited response to immune-checkpoint blockade. Here we conducted a multiomic analysis encompassing single-cell RNA sequencing, spatial transcriptomics and spatial proteomics, combined with genetic and pharmacological perturbations to systematically develop a high-resolution and spatially resolved map of intratumoral expression heterogeneity in CSCC. Three tumor states (epithelial-cytokeratin, epithelial-immune (Epi-Imm) and epithelial senescence), recapitulating different stages of squamous differentiation, showed distinct tumor immune microenvironments. Bidirectional interactions between epithelial-cytokeratin malignant cells and immunosuppressive cancer-associated fibroblasts form an immune exclusionary microenvironment through transforming growth factor ß pathway signaling mediated by FABP5. In Epi-Imm tumors, malignant cells interact with natural killer and T cells through interferon signaling. Preliminary analysis of samples from a cervical cancer clinical trial ( NCT04516616 ) demonstrated neoadjuvant chemotherapy induces a state transition to Epi-Imm, which correlates with pathological complete remission following treatment with immune-checkpoint blockade. These findings deepen the understanding of cellular state diversity in CSCC.


Subject(s)
Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Female , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Uterine Cervical Neoplasms/genetics , Immune Checkpoint Inhibitors , Clinical Relevance , Ecosystem , Multiomics , Keratins/metabolism , Keratins/therapeutic use , Tumor Microenvironment/genetics , Fatty Acid-Binding Proteins/therapeutic use
16.
Cell Biosci ; 13(1): 178, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759323

ABSTRACT

BACKGROUND: Although the clinical application of PARP inhibitors has brought hope to ovarian cancer, the problem of its resistance has become increasingly prominent. Therefore, clinical experts have been focused on finding specific indicators and therapeutic targets that can be used for resistance monitoring of PARP inhibitors. RESULTS: By cfDNA detecting during Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer, we found the presence of MRE11:p.K464R mutation was strongly associated with acquired Olaparib resistance. Structural analysis revealed that the MRE11:p.K464R mutation is situated at a critical site where the MRE11 protein interacts with other biomolecules, leading to potential structural and functional abnormalities of MRE11 protein. Functionally, MRE11:p.K464R mutation enhanced the tolerance of Olaparib by reducing the DNA damage. Mechanistically, MRE11:p.K464R mutation improved the efficiency of DNA damage repair and induce Olaparib resistance by enhancing its binding activity with the interacting proteins (including RAD50 and RPS3). Among them, the enhanced binding of MRE11:p.K464R mutation to RAD50/RPS3 facilitated non-homologous end joining (NHEJ) repair in tumor cells, thereby expanding the scope of research into acquired resistance to PARP inhibitors. CONCLUSIONS: Our findings provide a theoretical basis for MRE11:p.K464R mutation as a specific indicator of resistance monitoring in Olaparib treatment, and the exploration of its resistance mechanism provides a novel insights for the formulation of combination ther therapies after Olaparib resistance.

17.
Cell Death Discov ; 9(1): 285, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542044

ABSTRACT

Bromo- and extra-terminal domain (BET) inhibitors (BETi) have been shown to decrease tumor growth in preclinical models and clinical trials. However, toxicity and rapid emergence of resistance have limited their clinical implementation. To identify state changes underlying acquisition of resistance to the JQ1 BETi, we reanalyzed single-cell RNAseq data from JQ1 sensitive and resistant SUM149 and SUM159 triple-negative breast cancer cell lines. Parental and JQ1-resistant SUM149 and SUM159 exhibited a stem cell-like and embryonic diapause (SCLED) cell state as well as a transitional cell state between the SCLED state that is present in both treatment naïve and JQ1 treated cells, and a number of JQ1 resistant cell states. A transitional cell state transcriptional signature but not a SCLED state transcriptional signature predicted worsened outcomes in basal-like breast cancer patients suggesting that transit from the SCLED state to drug-resistant states contributes to patient outcomes. Entry of SUM149 and SUM159 into the transitional cell state was characterized by elevated expression of the CD9 tetraspanin. Knockdown or inhibition of CD9-sensitized cells to multiple targeted and cytotoxic drugs in vitro. Importantly, CD9 knockdown or blockade sensitized SUM149 to JQ1 in vivo by trapping cells in the SCLED state and limiting transit to resistant cell states. Thus, CD9 appears to be critical for the transition from a SCLED state into treatment-resistant cell states and warrants exploration as a therapeutic target in basal-like breast cancer.

18.
Front Immunol ; 14: 1216901, 2023.
Article in English | MEDLINE | ID: mdl-37520576

ABSTRACT

Immunotherapy showed remarkable efficacy in several cancer types. However, the majority of patients do not benefit from immunotherapy. Evaluating tumor heterogeneity and immune status before treatment is key to identifying patients that are more likely to respond to immunotherapy. Demographic characteristics (such as sex, age, and race), immune status, and specific biomarkers all contribute to response to immunotherapy. A comprehensive immunodiagnostic model integrating all these three dimensions by artificial intelligence would provide valuable information for predicting treatment response. Here, we coined the term "immunodiagnosis" to describe the blueprint of the immunodiagnostic model. We illustrated the features that should be included in immunodiagnostic model and the strategy of constructing the immunodiagnostic model. Lastly, we discussed the incorporation of this immunodiagnosis model in clinical practice in hopes of improving the prognosis of tumor immunotherapy.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , Immunotherapy/methods , Neoplasms/diagnosis , Neoplasms/therapy , Prognosis , Immunologic Tests
19.
Gynecol Oncol ; 176: 43-52, 2023 09.
Article in English | MEDLINE | ID: mdl-37442025

ABSTRACT

OBJECTIVE: This study aimed to determine the prognostic significance of positive peritoneal cytology (PC) on endometrial carcinoma (EC) patients under the ESGO/ESTRO/ESP risk classification. METHODS: This study retrospectively analyzed EC patients from 27 medical centers in China from 2000 to 2019. Patients were divided into three ESGO risk groups: low-risk, intermediate-risk and high-intermediate risk, and high-risk groups. The covariates were balanced by using the propensity score-based inverse probability of treatment weighting (PS-IPTW). The prognostic significance of PC was assessed by Kaplan-Meier curves and multivariate Cox regression analysis. RESULTS: A total of 6313 EC patients with PC results were included and positive PC was reported in 384 women (6.1%). The multivariate Cox analysis in all patients showed the positive PC was significantly associated with decreased PFS (hazard ratio [HR] 2.20, 95% confidence interval [CI] 1.55-3.13, P < 0.001) and OS (HR 2.25, 95% CI 1.49-3.40, P < 0.001),and the Kaplan-Meier curves also showed a poor survival in the intermediate and high-intermediate risk group (5-year PFS: 75.5% vs. 93.0%, P < 0.001; 5-year OS: 78.3% vs. 96.4%, P < 0.001); While in the low-risk group, there were no significant differences in PFS and OS between different PC status (5-year PFS: 93.1% vs. 97.3%, P = 0.124; 5-year OS: 98.6% vs. 98.2%, P = 0.823); in the high-risk group, significant difference was only found in PFS (5-year PFS: 62.5% vs. 77.9%, P = 0.033). CONCLUSION: Positive PC was an adverse prognostic factor for EC, especially in the intermediate and high-intermediate risk patients. Gynecologic oncologists should reconsider the effect of positive PC on different ESGO risk groups.


Subject(s)
Cytology , Endometrial Neoplasms , Female , Humans , Prognosis , Retrospective Studies , Endometrial Neoplasms/pathology , Peritoneum/pathology
20.
Oncol Rep ; 50(1)2023 07.
Article in English | MEDLINE | ID: mdl-37264954

ABSTRACT

Ovarian serous carcinoma (OC) is a common cause of mortality among gynecological malignancies. Although tumor­infiltrating CD8 T cells are associated with a favorable prognosis of OC, the underlying mechanisms are not clearly understood. The present study identified the key genes and potential molecular mechanisms associated with CD8 T­cell infiltration in OC. The score of CD8 T cells in The Cancer Genome Atlas dataset (376 samples from patients with OC) was estimated using the quanTIseq and MCP­counter algorithms. Thereafter, a protein­protein interaction network of differentially expressed genes was constructed and the hub genes were identified using cytoHubba in Cytoscape. The results revealed that signal transducer and activator of transcription 4 (STAT4) was strongly correlated with CD8 T­cell infiltration in OC. Furthermore, the prognostic value of STAT4 in OC was verified by Kaplan­Meier curve, and univariate and multivariate analyses. The biological functions of STAT4 were determined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, which revealed that STAT4 is closely related to cytokines in OC. Moreover, Spearman correlation analysis suggested that STAT4 was most positively correlated with CC chemokine ligand 5 (CCL5). CCL5 was revealed to be critical for orchestrating T­cell infiltration in tumors. Moreover, immunohistochemistry and reverse transcription­quantitative PCR showed that STAT4, CCL5 and CD8A (a marker for CD8 T cells) were closely related in OC. Moreover, in vitro analysis revealed that STAT4 knockdown led to a decrease in CCL5 expression and CD8 T­cell migration. Taken together, the present study suggested that STAT4 may regulate CD8 T­cell infiltration in OC tissues by inducing CCL5 secretion. Furthermore, STAT4 may be considered a promising prognostic biomarker for OC.


Subject(s)
Carcinoma , Ovarian Neoplasms , Humans , Female , Chemokines, CC/metabolism , Ligands , Prognosis , CD8-Positive T-Lymphocytes/metabolism , Carcinoma/pathology , Ovarian Neoplasms/pathology , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...