Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Elife ; 132024 May 17.
Article in English | MEDLINE | ID: mdl-38757931

ABSTRACT

Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron-sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron-sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.


Subject(s)
Erythropoiesis , Phosphatidylinositol 3-Kinases , Thrombopoiesis , Transcription Factors , Erythropoiesis/physiology , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Phosphatidylinositol 3-Kinases/metabolism , K562 Cells , Thrombopoiesis/physiology , Signal Transduction , Nuclear Proteins/metabolism , Cell Nucleus/metabolism , Protein Transport , Hematopoietic Stem Cells/metabolism , HSC70 Heat-Shock Proteins/metabolism , Active Transport, Cell Nucleus
2.
PLoS One ; 19(5): e0303751, 2024.
Article in English | MEDLINE | ID: mdl-38768114

ABSTRACT

Increasing yield is an important goal of barley breeding. In this study, 54 papers published from 2001-2022 on QTL mapping for yield and yield-related traits in barley were collected, which contained 1080 QTLs mapped to the barley high-density consensus map for QTL meta-analysis. These initial QTLs were integrated into 85 meta-QTLs (MQTL) with a mean confidence interval (CI) of 2.76 cM, which was 7.86-fold narrower than the CI of the initial QTL. Among these 85 MQTLs, 68 MQTLs were validated in GWAS studies, and 25 breeder's MQTLs were screened from them. Seventeen barley orthologs of yield-related genes in rice and maize were identified within the hcMQTL region based on comparative genomics strategy and were presumed to be reliable candidates for controlling yield-related traits. The results of this study provide useful information for molecular marker-assisted breeding and candidate gene mining of yield-related traits in barley.


Subject(s)
Genome-Wide Association Study , Hordeum , Quantitative Trait Loci , Hordeum/genetics , Hordeum/growth & development , Chromosome Mapping , Plant Breeding , Phenotype , Genome, Plant , Genes, Plant
3.
Sensors (Basel) ; 24(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794076

ABSTRACT

Object detection is one of the core technologies for autonomous driving. Current road object detection mainly relies on visible light, which is prone to missed detections and false alarms in rainy, night-time, and foggy scenes. Multispectral object detection based on the fusion of RGB and infrared images can effectively address the challenges of complex and changing road scenes, improving the detection performance of current algorithms in complex scenarios. However, previous multispectral detection algorithms suffer from issues such as poor fusion of dual-mode information, poor detection performance for multi-scale objects, and inadequate utilization of semantic information. To address these challenges and enhance the detection performance in complex road scenes, this paper proposes a novel multispectral object detection algorithm called MRD-YOLO. In MRD-YOLO, we utilize interaction-based feature extraction to effectively fuse information and introduce the BIC-Fusion module with attention guidance to fuse different modal information. We also incorporate the SAConv module to improve the model's detection performance for multi-scale objects and utilize the AIFI structure to enhance the utilization of semantic information. Finally, we conduct experiments on two major public datasets, FLIR_Aligned and M3FD. The experimental results demonstrate that compared to other algorithms, the proposed algorithm achieves superior detection performance in complex road scenes.

4.
Org Biomol Chem ; 22(15): 3080-3085, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563263

ABSTRACT

Herein we report an additive-free protocol for the facile synthesis of α,α-dichloroketones and α-chlorohydrins from various aryl terminal, diaryl internal, and aliphatic terminal alkynes and alkenes, respectively. The commercially available tert-butyl hypochlorite (tBuOCl) was employed as a suitable chlorinating reagent, being accompanied by the less harmful tBuOH as the by-product. In addition, the oxygen atoms in the products came from water rather than molecular oxygen, based on the 18O-labelling experiments. Meanwhile, the diastereoselectivity of the Z- and the corresponding E-alkenes has been compared and rationalized. Using a group of control experiments, the possible mechanisms have been proposed as the initial electrophilic chlorination of unsaturated C-C bonds in a Markovnikov-addition manner in general followed by a nucleophilic addition with water. This work simplified the oxychlorination method with a mild chlorine source and a green oxygen source under ambient conditions.

5.
PLoS Comput Biol ; 20(4): e1011351, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38598563

ABSTRACT

In the midst of an outbreak or sustained epidemic, reliable prediction of transmission risks and patterns of spread is critical to inform public health programs. Projections of transmission growth or decline among specific risk groups can aid in optimizing interventions, particularly when resources are limited. Phylogenetic trees have been widely used in the detection of transmission chains and high-risk populations. Moreover, tree topology and the incorporation of population parameters (phylodynamics) can be useful in reconstructing the evolutionary dynamics of an epidemic across space and time among individuals. We now demonstrate the utility of phylodynamic trees for transmission modeling and forecasting, developing a phylogeny-based deep learning system, referred to as DeepDynaForecast. Our approach leverages a primal-dual graph learning structure with shortcut multi-layer aggregation, which is suited for the early identification and prediction of transmission dynamics in emerging high-risk groups. We demonstrate the accuracy of DeepDynaForecast using simulated outbreak data and the utility of the learned model using empirical, large-scale data from the human immunodeficiency virus epidemic in Florida between 2012 and 2020. Our framework is available as open-source software (MIT license) at github.com/lab-smile/DeepDynaForcast.


Subject(s)
Computational Biology , Deep Learning , Epidemics , Phylogeny , Humans , Epidemics/statistics & numerical data , Computational Biology/methods , HIV Infections/transmission , HIV Infections/epidemiology , Software , Florida/epidemiology , Algorithms , Computer Simulation , Disease Outbreaks/statistics & numerical data
6.
Methods Mol Biol ; 2757: 383-445, 2024.
Article in English | MEDLINE | ID: mdl-38668977

ABSTRACT

The emergence and development of single-cell RNA sequencing (scRNA-seq) techniques enable researchers to perform large-scale analysis of the transcriptomic profiling at cell-specific resolution. Unsupervised clustering of scRNA-seq data is central for most studies, which is essential to identify novel cell types and their gene expression logics. Although an increasing number of algorithms and tools are available for scRNA-seq analysis, a practical guide for users to navigate the landscape remains underrepresented. This chapter presents an overview of the scRNA-seq data analysis pipeline, quality control, batch effect correction, data standardization, cell clustering and visualization, cluster correlation analysis, and marker gene identification. Taking the two broadly used analysis packages, i.e., Scanpy and MetaCell, as examples, we provide a hands-on guideline and comparison regarding the best practices for the above essential analysis steps and data visualization. Additionally, we compare both packages and algorithms using a scRNA-seq dataset of the ctenophore Mnemiopsis leidyi, which is representative of one of the earliest animal lineages, critical to understanding the origin and evolution of animal novelties. This pipeline can also be helpful for analyses of other taxa, especially prebilaterian animals, where these tools are under development (e.g., placozoan and Porifera).


Subject(s)
Algorithms , Gene Expression Profiling , Single-Cell Analysis , Software , Single-Cell Analysis/methods , Animals , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Computational Biology/methods , Cluster Analysis , Transcriptome/genetics
7.
Int J Obes (Lond) ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424257

ABSTRACT

OBJECTIVE: In our previous study, we identified a notable increase in miR-548ag content after obesity, which contributes to the progression of Type 2 diabetes Mellitus(T2DM) through the up-regulation of Dipeptidyl Peptidase-4(DPP4) expression within the liver. However, the precise molecular mechanisms underlying the upregulation of DPP4 by miR-548ag remain elusive. Mature miRNAs rich in GU sequences can activate the TLR(7/8)/NF-κB signalling pathway, which transcriptionally activates DPP4 expression. Notably, the proportion of GU sequences in hsa-miR-548ag was found to be 47.6%. The study proposes a hypothesis suggesting that miR-548ag could potentially increase DPP4 expression in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway. METHODS: Male C57BL/6J mice were fed normal chow diet (NCD, n = 16) or high-fat diet (HFD, n = 16) for 12 weeks. For a duration of 6 weeks, NCD mice received intraperitoneal injections of a miR-548ag mimic, while HFD mice and db/db mice (n = 16) were administered intraperitoneal injections of a miR-548ag inhibitor. qRT-PCR and Western Blot were used to detect the expression level of miR-548ag, DPP4 and the activation of TLR(7/8)/NF-κB signalling pathway. HepG2 and L02 cells were transfected with miR-548ag mimic, miR-548ag inhibitor, TLR7/8 interfering fragment, and overexpression of miR-548ag while inhibiting TLR7/8, respectively. RESULTS: (1) We observed elevated levels of miR-548ag in the serum, adipose tissue, and liver of obese mice, accompanied by an upregulation of TLR7/8, pivotal protein in the NF-κB pathway, and DPP4 expression in the liver. (2) miR-548ag promotes DPP4 expression in hepatocytes via the TLR(7/8)/NF-κB signalling pathway, resulting in a reduction in the glucose consumption capacity of hepatocytes. (3) The administration of a miR-548ag inhibitor enhanced glucose tolerance and insulin sensitivity in db/db mice. CONCLUSIONS: MiR-548ag promotes the expression of DPP4 in hepatocytes by activating the TLR(7/8)/NF-κB signalling pathway. MiR-548ag may be a potential target for the treatment of T2DM.

8.
Front Bioeng Biotechnol ; 12: 1361966, 2024.
Article in English | MEDLINE | ID: mdl-38410166

ABSTRACT

The mitochondria act as the main producers of reactive oxygen species (ROS) within cells. Elevated levels of ROS can activate the mitochondrial apoptotic pathway, leading to cell apoptosis. In this study, we devised a molecular prodrug named CTT2P, demonstrating notable efficacy in facilitating mitochondrial apoptosis. To develop nanomedicine, we enveloped CTT2P within bovine serum albumin (BSA), resulting in the formulation known as CTT2P@B. The molecular prodrug CTT2P is achieved by covalently conjugating mitochondrial targeting triphenylphosphine (PPh3), photosensitizer TPPOH2, ROS-sensitive thioketal (TK), and chemotherapeutic drug camptothecin (CPT). The prodrug, which is chemically bonded, prevents the escape of drugs while they circulate throughout the body, guaranteeing the coordinated dispersion of both medications inside the organism. Additionally, the concurrent integration of targeted photodynamic therapy and cascade chemotherapy synergistically enhances the therapeutic efficacy of pharmaceutical agents. Experimental results indicated that the covalently attached prodrug significantly mitigated CPT cytotoxicity under dark conditions. In contrast, TPPOH2, CTT2, CTT2P, and CTT2P@B nanoparticles exhibited increasing tumor cell-killing effects and suppressed tumor growth when exposed to light at 660 nm with an intensity of 280 mW cm-2. Consequently, this laser-triggered, mitochondria-targeted, combined photodynamic therapy and chemotherapy nano drug delivery system, adept at efficiently promoting mitochondrial apoptosis, presents a promising and innovative approach to cancer treatment.

9.
J Ethnopharmacol ; 325: 117849, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301981

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Fraxini cortex, which has been widely used as a traditional Chinese medicine for 2000 years, is made from the dried bark of four plant species: Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray, Fraxinus chinensis Roxb., Fraxinus chinensis subsp. chinensis and Fraxinus stylosa Lingelsh.. In Chinese traditional medicine, it possesses the properties of heat-clearing and dampness-drying, asthma relief and cough suppression, as well as vision improvement. It is utilized for treating bacterial disorders, enteritis, leukorrhea, chronic bronitis, painful red eyes with swelling, lacrimation due to windward exposure, psoriasis, and other diseases or related symptoms. AIM OF THE STUDY: Fraxini cortex is abundant in chemical constituents and has garnered significant attention from plant chemists, particularly regarding coumarins, as evidenced by the recently identified three coumarin compounds. Considering the current dearth of systematic reporting on studies pertaining to Fraxini cortex, herein we provide a comprehensive summary of the advancements in phytochemistry, pharmacology, detection methods, and ethnomedicinal applications of Fraxini cortex. MATERIALS AND METHODS: We conducted a comprehensive search across online data sources (Web of Science, Public Medicine (PubMed), China National Knowledge Infrastructure (CNKI), as well as Chinese dissertations) and traditional Chinese medicine classics to gather the necessary literature resources for this review. RESULTS: Briefly, The Fraxini cortex yielded a total of 132 phytochemicals, including coumarins, lignans, secoiridoids, phenylethanol glycosides, flavonoids, triterpenoids, and other compounds. Among them, the main active ingredients are coumarins which possess a diverse range of pharmacological activities such as anti-inflammatory effects, anti-tumor properties, prevention of tissue fibrosis and oxidation damage as well as cardioprotective effects. CONCLUSIONS: All types of research conducted on Fraxini cortex, particularly in the field of ethnopharmacology, phytochemistry, and pharmacology, have been thoroughly reviewed. However, certain traditional applications and pharmacological activities of Fraxini cortex lack scientific evaluation or convincing evidence due to incomplete methodologies and ambiguous results, as well as a lack of clinical data. To validate its pharmacological activity, clinical efficacy, and safety profile, a systematic and comprehensive research evaluation is imperative. As an important traditional Chinese medicine, Fraxini cortex should be further explored to facilitate the development of novel drugs and therapeutics for various diseases. Greater attention should be given to how it can be better utilized.


Subject(s)
Medicine, Traditional , Phytotherapy , Ethnopharmacology , Medicine, Chinese Traditional/methods , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Coumarins/pharmacology , Coumarins/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry
10.
RSC Adv ; 14(5): 3122-3134, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38249670

ABSTRACT

Bacterial infections from chronic wounds affect about 175 million people each year and are a significant clinical problem. Through the integration of photodynamic therapy (PDT) and chemotherapy, a new photosensitizer consisting of ammonium salt N,N-bis-(2-hydroxyethyl)-N-(6-(4-(10,15,20-trimesitylporphyrin-5-yl) phenoxy) hexane)-N-methanaminium bromide, TMP(+) was successfully synthesized with a total reaction yield of 10%. The novel photosensitizer consists of two parts, a porphyrin photosensitizer part and a quaternary ammonium salt part, to achieve the synergistic effect of photodynamic and chemical antibacterial activity. With the increase of TMP(+) concentration, the diameter of the PCT fiber membranes (POL/COL/TMP(+); POL, polycaprolactone; COL, collagen) gradually increased, which was caused by the charge of the quaternary ammonium salt. At the same time, the antibacterial properties were gradually improved. We finally selected the PCT 0.5% group for the antibacterial experiment, with excellent performance in fiber uniformity, hydrophobicity and biosafety. The antibacterial experiment showed that the modified porphyrin TMP(+) had a better antibacterial effect than others. In vivo chronic wound healing experiments proved that the antibacterial and anti-inflammatory effect of the PCTL group was the best, further confirmed by H&E histological analysis, immunofluorescence and immunohistochemistry mechanism experiments. This research lays the foundation for the manufacture of novel molecules that combine chemical and photodynamic strategies.

11.
Sensors (Basel) ; 23(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571688

ABSTRACT

Due to the challenges of small detection targets, dense target distribution, and complex backgrounds in aerial images, existing object detection algorithms perform poorly in aerial image detection tasks. To address these issues, this paper proposes an improved algorithm called YOLOv5s-DSD based on YOLOv5s. Specifically, the SPDA-C3 structure is proposed and used to reduce information loss while focusing on useful features, effectively tackling the challenges of small detection targets and complex backgrounds. The novel decoupled head structure, Res-DHead, is introduced, along with an additional small object detection head, further improving the network's performance in detecting small objects. The original NMS is replaced by Soft-NMS-CIOU to address the issue of neighboring box suppression caused by dense object distribution. Finally, extensive ablation experiments and comparative tests are conducted on the VisDrone2019 dataset, and the results demonstrate that YOLOv5s-DSD outperforms current state-of-the-art object detection models in aerial image detection tasks. The proposed improved algorithm achieves a significant improvement compared with the original algorithm, with an increase of 17.4% in mAP@0.5 and 16.4% in mAP@0.5:0.95, validating the superiority of the proposed improvements.

12.
Front Bioeng Biotechnol ; 11: 1193052, 2023.
Article in English | MEDLINE | ID: mdl-37388766

ABSTRACT

A highly sensitive biosensor for detecting HPV 16 DNA was prepared based on Keggin-type polyoxometalate (SiW12)-grafted CdS quantum dots (SiW12@CdS QDs) and colloidal gold nanoparticles (Au NPs), which exhibited remarkable selectivity and sensitivity upon target DNA detection because of its excellent photoelectrochemical (PEC) response. Here, an enhanced photoelectronic response ability was achieved with the strong association of SiW12@CdS QDs by polyoxometalate modification, which was developed through a convenient hydrothermal process. Furthermore, on Au NP-modified indium tin oxide slides, a multiple-site tripodal DNA walker sensing platform coupled with T7 exonuclease was successfully fabricated with SiW12@CdS QDs/NP DNA as a probe for detecting HPV 16 DNA. Due to the remarkable conductivity of Au NPs, the photosensitivity of the as-prepared biosensor was improved in an I3-/I- solution and avoided the use of other regents toxic to living organisms. Finally, under optimized conditions, the as-prepared biosensor protocol demonstrated wide linear ranges (15-130 nM), with a limit of detection of 0.8 nM and high selectivity, stability, and reproducibility. Moreover, the proposed PEC biosensor platform offers a reliable pathway for detecting other biological molecules with nano-functional materials.

13.
FASEB J ; 37(7): e23033, 2023 07.
Article in English | MEDLINE | ID: mdl-37342904

ABSTRACT

In the obesity context, inflammatory cytokines secreted by adipocytes lead to insulin resistance and are key to metabolic syndrome development. In our previous study, we found that the transcription factor KLF7 promoted the expression of p-p65 and IL-6 in adipocytes. However, the specific molecular mechanism remained unclear. In the present study, we found that the expression of KLF7, PKCζ, p-IκB, p-p65, and IL-6 in epididymal white adipose tissue (Epi WAT) in mice fed a high-fat diet (HFD) was significantly increased. In contrast, the expression of PKCζ, p-IκB, p-p65, and IL-6 was significantly decreased in Epi WAT of KLF7 fat conditional knockout mice. In 3T3-L1 adipocytes, KLF7 promoted the expression of IL-6 via the PKCζ/NF-κB pathway. In addition, we performed luciferase reporter and chromatin immunoprecipitation assays, which confirmed that KLF7 upregulated the expression of PKCζ transcripts in HEK-293T cells. Collectively, our results show that KLF7 promotes the expression of IL-6 by upregulating PKCζ expression and activating the NF-κB signaling pathway in adipocytes.


Subject(s)
Glucose Metabolism Disorders , NF-kappa B , Animals , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Diet, High-Fat/adverse effects , Glucose Metabolism Disorders/metabolism , I-kappa B Proteins/metabolism , Inflammation/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , NF-kappa B/metabolism
14.
Heliyon ; 9(4): e14931, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025783

ABSTRACT

Stress-inducible interleukin 6 (IL-6) is generated in brown adipocytes via beta-3 adrenergic receptor (ADRB3) signaling, which is necessary in stress hyperglycemia, the kind of metabolic adaptation enabling "fight or flight" response by means of liver gluconeogenesis. Nevertheless, the mechanism of ADRB3 signaling mediates IL-6 in brown adipocytes remains unclear. As a result, it is critical to understand how brown adipocytes produce IL-6 via ADRB3 signaling. We found that the ADRB3 agonist and cold stimulation promoted the expression of KLF7 and IL-6 in brown adipocytes of mice. In parallel to these results in vivo, treatment with ADRB3 agonist promoted the expression of KLF7 and the release of IL-6 in primary brown adipocytes of mice. Notably, we discovered that KLF7 positively controls the expression of IL-6 and downregulated KLF7 largely blunted ADRB3 agonist induced IL-6 expressions in brown adipocytes. Our findings suggest that KLF7 is required for the generation of IL-6 when ADRB3 signaling is activated in brown adipocytes.

15.
Biomed Pharmacother ; 161: 114483, 2023 May.
Article in English | MEDLINE | ID: mdl-36906976

ABSTRACT

The gut microbiota colonizing the gastrointestinal tract, is an indispensable "invisible organ" that affects multiple aspects of human health. The gut microbial community has been assumed to be an important stimulus to the immune homeostasis and development, and increasing data support the role of the gut microbiota-immunity axis in autoimmune diseases. Host's immune system requires recognition tools to communicate with the gut microbial evolutionary partners. Among these microbial perceptions, T cells enable the widest spectrum of gut microbial recognition resolution. Specific gut microbiota direct the induction and differentiation of Th17 cells in intestine. However, the detailed links between the gut microbiota and Th17 cells have not been well established. In this review, we describe the generation and characterization of Th17 cells. Notably, we discuss the induction and differentiation of Th17 cells by the gut microbiota and their metabolites, as well as recent advances in our understanding of interactions between Th17 cells and the gut microbiota in human diseases. In addition, we provide the emerging evidences in support of interventions targeting the gut microbes/Th17 cells in human diseases.


Subject(s)
Gastrointestinal Microbiome , Th17 Cells , Humans , Autoimmune Diseases/metabolism , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract , Microbiota
16.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769291

ABSTRACT

The present study aimed to explore the molecular mechanism underlying the regulation of glucose metabolism by miR-548ag. For the first time, we found that miR-548ag expression was elevated in the abdominal adipose tissue and serum of subjects with obesity and type 2 diabetes mellitus (T2DM). The conditional knockout of adipose tissue Dicer notably reduced the expression and content of miR-548ag in mouse adipose tissue, serum, and liver tissue. The combined use of RNAseq, an miRNA target gene prediction software, and the dual luciferase reporter assay confirmed that miR-548ag exerts a targeted regulatory effect on DNMT3B and DPP4. miR-548ag and DPP4 expression was increased in the adipose tissue, serum, and liver tissue of diet-induced obese mice, while DNMT3B expression was decreased. It was subsequently confirmed both in vitro and in vivo that adipose tissue-derived miR-548ag impaired glucose tolerance and insulin sensitivity by inhibiting DNMT3B and upregulating DPP4. Moreover, miR-548ag inhibitors significantly improved the adverse metabolic phenotype in both obese mice and db/db mice. These results revealed that the expression of the adipose tissue-derived miR-548ag increased in obese subjects, and that this could upregulate the expression of DPP4 by targeting DNMT3B, ultimately leading to glucose metabolism disorder. Therefore, miR-548ag could be utilized as a potential target in the treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , MicroRNAs , Mice , Animals , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Up-Regulation , Mice, Obese , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Adipose Tissue/metabolism , Liver/metabolism , Obesity/genetics , Obesity/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Insulin Resistance/genetics , Mice, Inbred C57BL
17.
Front Plant Sci ; 14: 1319889, 2023.
Article in English | MEDLINE | ID: mdl-38283973

ABSTRACT

Improving barley grain quality is a major goal in barley breeding. In this study, a total of 35 papers focusing on quantitative trait loci (QTLs) mapping for barley quality traits published since 2000 were collected. Among the 454 QTLs identified in these studies, 349 of them were mapped onto high-density consensus maps, which were used for QTL meta-analysis. Through QTL meta-analysis, the initial QTLs were integrated into 41 meta-QTLs (MQTLs) with an average confidence interval (CI) of 1. 66 cM, which is 88.9% narrower than that of the initial QTLs. Among the 41 identified MQTLs, 25 were subsequently validated in publications using genome-wide association study (GWAS). From these 25 validated MQTLs, ten breeder's MQTLs were selected. Synteny analysis comparing barley and wheat MQTLs revealed orthologous relationships between eight breeder's MQTLs and 45 wheat MQTLs. Additionally, 17 barley homologs associated with rice quality traits were identified within the regions of the breeder's MQTLs through comparative analysis. The findings of this study provide valuable insights for molecular marker-assisted breeding and the identification of candidate genes related to quality traits in barley.

18.
PLoS One ; 17(10): e0276602, 2022.
Article in English | MEDLINE | ID: mdl-36279291

ABSTRACT

Flag leaf is an important organ for photosynthesis of wheat plants, and a key factor affecting wheat yield. In this study, quantitative trait loci (QTL) for flag leaf morphological traits in wheat reported since 2010 were collected to investigate the genetic mechanism of these traits. Integration of 304 QTLs from various mapping populations into a high-density consensus map composed of various types of molecular markers as well as QTL meta-analysis discovered 55 meta-QTLs (MQTL) controlling morphological traits of flag leaves, of which 10 MQTLs were confirmed by GWAS. Four high-confidence MQTLs (MQTL-1, MQTL-11, MQTL-13, and MQTL-52) were screened out from 55 MQTLs, with an average confidence interval of 0.82 cM and a physical distance of 9.4 Mb, according to the definition of hcMQTL. Ten wheat orthologs from rice (7) and Arabidopsis (3) that regulated leaf angle, development and morphogenesis traits were identified in the hcMQTL region using comparative genomics, and were speculated to be potential candidate genes regulating flag leaf morphological traits in wheat. The results from this study provides valuable information for fine mapping and molecular markers assisted selection to improve morphological characters in wheat flag leaf.


Subject(s)
Quantitative Trait Loci , Triticum , Triticum/genetics , Bread , Chromosome Mapping/methods , Phenotype , Plant Leaves/genetics , Plant Leaves/anatomy & histology
19.
Front Pharmacol ; 13: 829759, 2022.
Article in English | MEDLINE | ID: mdl-35814226

ABSTRACT

Abemaciclib is a cyclin-dependent kinases 4/6 (CDK4/6) inhibitor approved for the treatment of metastatic breast cancer. Preclinical studies suggest that abemaciclib has the potential for lung cancer treatment. However, several clinical trials demonstrate that monotherapy with abemaciclib has no obvious superiority than erlotinib to treat lung cancer patients, limiting its therapeutic options for lung cancer treatment. Here, we show that the US Food and Drug Administration (FDA)-approved drug, gilteritinib, enhances the cytotoxicity of abemaciclib through inducing apoptosis and senescence in lung cancer cells. Interestingly, abemaciclib in combination with gilteritinib leads to excessive accumulation of vacuoles in lung cancer cells. Mechanistically, combined abemaciclib and gilteritinib induces complete inactivation of AKT and retinoblastoma (Rb) pathways in lung cancer cells. In addition, RNA-sequencing data demonstrate that combination of abemaciclib and gilteritinib treatment induces G2 phase cell-cycle arrest, inhibits DNA replication, and leads to reduction in homologous recombination associated gene expressions. Of note, abemaciclib-resistant lung cancer cells are more sensitive to gilteritinib treatment. In a mouse xenograft model, combined abemaciclib and gilteritinib is more effective than either drug alone in suppressing tumor growth and appears to be well tolerated. Together, our findings support the combination of abemaciclib with gilteritinib as an effective strategy for the treatment of lung cancer, suggesting further evaluation of their efficacy is needed in a clinical trial.

20.
Front Oncol ; 12: 908162, 2022.
Article in English | MEDLINE | ID: mdl-35747817

ABSTRACT

LINC01133 is a long intergenic non-coding RNA that regulates malignancy in several cancers, including those of the digestive, female reproductive, respiratory, and urinary system. LINC01133 is an extensively studied lncRNA that is highly conserved, and its relatively stable expression is essential for its robust biological function. Its expression is highly tissue-specific with a distinct subcellular localization. It functions as an oncogene or a tumor suppressor gene in different cancers via multiple mechanisms, such as those that involve competing with endogenous RNA and binding to RNA-binding proteins or DNA. Moreover, the secretion and transportation of LINC01133 by extracellular vesicles in the tumor micro-environment is regulated by other cells in the tumor micro-environment. To date, two mechanisms, an increase in copy number and regulation of transcription elements, have been found to regulate LINC01133 expression. Clinically, LINC01133 is an ideal marker for cancer prognosis and a potential therapeutic target in cancer treatment regimes. In this review, we aimed to summarize the aforementioned information as well as posit future directions for LINC01133 research.

SELECTION OF CITATIONS
SEARCH DETAIL
...