Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.293
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1915-1923, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812204

ABSTRACT

This study aims to elucidate the therapeutic effect and mechanism of Jingfang Granules on acute lung injury, and to investigate the regulatory effect of Jingfang Granules on the metabolic disorders of endogenous metabolites in feces and the homeostasis of intestinal microbiota in acute lung injury, mice were randomly divided into a sham group, a model group, and a Jingfang Granules group. After modeling, the mice were continuously administered for 6 days. Using ultra-high performance liquid chromatography quadrupole/electrostatic field orbital trap high-resolution mass spectrometry(UHPLC-HESI-QE-Orbitrap-MS/MS) metabolomics technology and 16S rRNA high-throughput sequencing technology, changes in endogenous small molecule substances and gut microbiota in mouse intestines were determined, and potential biomarkers were identified. The results showed that Jingfang Granules can regulate 11 biomarkers, including L-glutamic acid, succinic acid, arachidonic acid, linoleic acid, linolenic acid, phenylalanine, sphingosine, 2-hydroxy-2-methyl butyric acid, pyruvate, tryptophan, and palmitic acid. Metabolic pathway analysis was conducted on these 11 biomarkers using the online software MetaboAnalyst, identifying potential major metabolic pathways. Among them, a total of 10 metabolic pathways are closely related to the treatment of acute lung injury with Jingfang Granules, including alanine, aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis, citrate cycle(TCA cycle), alyoxylate and dicarboxylate metabolism, arginine and proline metabolism, linoleic acid metabolism and linolenic acid metabolism, nitrogen metabolism, D-glutamine and D-gluta-matemetabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism. The results of gut microbiota showed significant differences in bacteria, mainly including Bacteroides, Akkermansia, Lachnospiraceae_NK4A136_group, Lachnochlostridium, and Klebsiella. Spearman analysis confirms that Akkermansia and Lachnospiraceae_NK4A136_group is a significant positive correlation between the abundance of succinic acid, arachidonic acid, linolenic acid, linoleic acid, butyric acid, and pyruvate in the group; Bacteroides, Klebsiella, Lachnochlostrium are significantly positively correlated with the abundance of L-glutamic acid, phenylalanine, and sphingosine. The above results indicate that the therapeutic effect of Jingfang Granules on acute lung injury is achieved by improving the imbalance of gut microbiota in mice with acute lung injury, balancing the metabolism of alanine, biosynthesis of aminoacyl tRNA, aspartic acid, glutamate, tricarboxylic acid cycle, biosynthesis of phenylalanine, tyrosine, tryptophan, and metabolism of linoleic acid.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Feces , Gastrointestinal Microbiome , Metabolomics , Animals , Mice , Gastrointestinal Microbiome/drug effects , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Acute Lung Injury/microbiology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Male , Feces/microbiology , Feces/chemistry , Humans , Chromatography, High Pressure Liquid
2.
Sci Total Environ ; 933: 173053, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38723973

ABSTRACT

Nitrochlorobenzene (NCB) is very common in pesticide and chemical industries, which has become a major problem in soil environment. However, the remediation of NCB contaminated soil is received finite concern. Using biochar as a substrate for nanoscale-zero valent iron (nZVI/p-BC) to activate peroxodisulfate (PDS), a novel heterogeneous oxidative system had been applied in the current study to remediate NCB contaminants in soil. The degradation efficiencies and kinetics of m-NCB, p-NCB, and o-NCB by various systems were contrasted in soil slurry. Key factors including the dosage of nZVI/p-BC, the molar ratio of nZVI/PDS, initial pH and temperature on degradation of NCB were further examined. The results confirmed that the nZVI/p-BC/PDS displayed the remarkable performance for removing NCB compared with other systems. Higher temperature with nZVI/PDS molar ratio of 2:1 under the acidic condition favored the reduction of NCB. The treatment for NCB with optimal conditions were evaluated for the engineering application. The mechanism of nZVI/p-BC/PDS indicated that electron transfer between p-BC and nZVI was responsible for activation of PDS, generating active species (SO4•-, •OH and 1O2) via both the free and non-free radical pathways. Experimental results revealed prominent availability of nZVI/p-BC/PDS system in remediation of actual contaminated field by NCB.

3.
Front Plant Sci ; 15: 1372122, 2024.
Article in English | MEDLINE | ID: mdl-38693923

ABSTRACT

Introduction: Tropical forests are characterized by intricate mosaics of species-rich and structurally complex forest communities. Evaluating the functional vulnerability of distinct community patches is of significant importance in establishing conservation priorities within tropical forests. However, previous assessments of functional vulnerability in tropical forests have often focused solely on isolated factors or individual disturbance events, with limited consideration for a broad spectrum of disturbances and the responses of diverse species. Methods: We assessed the functional vulnerability of woody plant communities in a 60-ha dynamic plot within a tropical montane rainforest by conducting in silico simulations of a wide range disturbances. These simulations combined plant functional traits and community properties, including the distribution of functional redundancy across the entire trait space, the distribution of abundance across species, and the relationship between species trait distinctiveness and species abundance. We also investigated the spatial distribution patterns of functional vulnerability and their scale effects, and employed a spatial autoregressive model to examine the relationships between both biotic and abiotic factors and functional vulnerability at different scales. Results: The functional vulnerability of tropical montane rainforest woody plant communities was generally high (the functional vulnerability of observed communities was very close to that of the most vulnerable virtual community, with a value of 72.41% on average at the 20m×20m quadrat scale), and they exhibited significant spatial heterogeneity. Functional vulnerability decreased with increasing spatial scale and the influence of both biotic and abiotic factors on functional vulnerability was regulated by spatial scale, with soil properties playing a dominant role. Discussion: Our study provides new specific insights into the comprehensive assessment of functional vulnerability in the tropical rainforest. We highlighted that functional vulnerabilities of woody plant communities and their sensitivity to environmental factors varied significantly within and across spatial scales in the tropical rainforest landscape. Preserving and maintaining the functionality of tropical ecosystems should take into consideration the variations in functional vulnerability among different plant communities and their sensitivity to environmental factors.

4.
Bioact Mater ; 38: 195-206, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38756202

ABSTRACT

Fully bioresorbable vascular scaffolds (BVSs) aim to overcome the limitations of metallic drug-eluting stents (DESs). However, polymer-based BVSs, such as Abbott's Absorb, the only US FDA-approved BVS, have had limited use due to increased strut thickness (157 µm for Absorb), exacerbated tissue inflammation, and increased risk of major cardiac events leading to inferior clinical performance when compared to metallic DESs. Herein we report the development of a drug-eluting BVS (DE-BVS) through the innovative use of a photopolymerizable, citrate-based biomaterial and a high-precision additive manufacturing process. BVS with a clinically relevant strut thickness of 62 µm can be produced in a high-throughput manner, i.e. one BVS per minute, and controlled release of the anti-restenosis drug everolimus can be achieved by engineering the structure of polymer coatings to fabricate drug-eluting BVS. We achieved the successful deployment of BVSs and DE-BVSs in swine coronary arteries using a custom-built balloon catheter and BVS delivery system and confirmed BVS safety and efficacy regarding maintenance of vessel patency for 28 days, observing an inflammation profile for BVS and DE-BVS that was comparable to the commercial XIENCE™ DES (Abbott Vascular).

5.
ChemSusChem ; : e202400569, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773704

ABSTRACT

In practical operating conditions, the lithium deposition behavior is often influenced by multiple coupled factors and there is also a lack of comprehensive and long-term validation for dendrite suppression strategies. Our group previously proposed an intermittent lithiophilic model for high-performance three-dimensional (3D) composite lithium metal anode (LMA), however, the electrodeposition behavior was not discussed. To verify this model, this paper presents a modified 3D carbon cloth (CC) backbone by incorporating NiFe2O4/Fe2O3 (NFFO) nanoparticles derived from bimetallic NiFe-MOFs. Enhanced Li adsorption capacity and lithiophilic modulation were achieved by bimetallic MOFs-derivatives which prompted faster and more homogeneous Li deposition. The intermittent model was further verified in conjunction with the density functional theory (DFT) calculations and electrodeposition behaviors. As a result, the obtained Li-CC@NFFO||Li-CC@NFFO symmetric batteries exhibit prolonged lifespan and low hysteresis voltage even under ultra-high current and capacity conditions (5 mA cm-2, 10 mAh cm-2), what's more, the full battery coupled with a high mass loading (9 mg cm-2) of LiFePO4 cathode can be cycled at a high rate of 5C, the capacity retention is up to 95.2% before 700 cycles. This work is of great significance to understand the evolution of lithium dendrites on the 3D intermittent lithiophilic frameworks.

6.
Mar Drugs ; 22(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786594

ABSTRACT

Marine macroalgae are increasingly recognized for their significant biological and economic potential. The key to unlocking this potential lies in the efficient degradation of all carbohydrates from the macroalgae biomass. However, a variety of polysaccharides (alginate, cellulose, fucoidan, and laminarin), are difficult to degrade simultaneously in a short time. In this study, the brown alga Saccharina japonica was found to be rapidly and thoroughly degraded by the marine bacterium Agarivorans albus B2Z047. This strain harbors a broad spectrum of carbohydrate-active enzymes capable of degrading various polysaccharides, making it uniquely equipped to efficiently break down both fresh and dried kelp, achieving a hydrolysis rate of up to 52%. A transcriptomic analysis elucidated the presence of pivotal enzyme genes implicated in the degradation pathways of alginate, cellulose, fucoidan, and laminarin. This discovery highlights the bacterium's capability for the efficient and comprehensive conversion of kelp biomass, indicating its significant potential in biotechnological applications for macroalgae resource utilization.


Subject(s)
Phaeophyceae , Polysaccharides , Seaweed , Seaweed/metabolism , Phaeophyceae/metabolism , Polysaccharides/metabolism , Hydrolysis , Biomass , Glucans/metabolism , Flavobacteriaceae/metabolism , Kelp/metabolism
7.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798392

ABSTRACT

Single-molecule localization microscopy (SMLM) enables super-resolution imaging on conventional fluorescent microscopes. Spectroscopic SMLM (sSMLM) further allows highly multiplexed super-resolution imaging. We report an easy-to-implement symmetrically dispersed dual-wedge prism (SDDWP)-sSMLM design that maximizes photon utilization. We first symmetrically dispersed photons to the -1st and +1st orders in an optical assembly using two identical dual-wedge prisms (DWPs). Then we computationally extracted the fluorophores' spatial position and spectral characteristics using photons in both the -1st and +1st orders. Theoretical analysis and experimental validation showed lateral and spectral precisions of 10.1 nm and 0.3 nm, respectively, representing improvements of 28% and 48% over our previous DWP-based system, where emitted photons are divided separately for spatial and spectral analyses.

8.
Heliyon ; 10(10): e30910, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778933

ABSTRACT

According to the Standard of Chinese Medicinal Materials of Shaanxi Province (2015 edition), Salvia miltiorrhiza caulis et folium is the dried stems and leaves of Salvia miltiorrhiza, which could activate blood and dispell blood stasis, clear the mind and remove annoyance. In this study, the dynamic absorption changes of phenolic acids (FS) and phenolic acids-flavonoids (FT) in rats after oral administration were studied by UPLC-TQ/MS/MS, to elucidate the pharmacokinetics of seven major bioactive components of the stem-leaf of Salvia miltiorrhiza in vivo. The results showed that the pharmacokinetic parameters of FS and FT were significantly different in normal rats and model rats. Compared with the control group, after injecting 10 % polymer dextran 500 into the tail vein to establish a model of microcirculation disturbance, the Cmax of caffeic acid decreased. The Cmax of rosmarinic acid and lithospermic acid increased. Danshensu showed a decrease in CLz/F, accompanied by an increase in both AUC0-t and AUC0-∞. The AUC0-t of lithospermic acid was also increased. These results indicated that microcirculation disturbance could decrease the absorption of caffeic acid while increasing the absorption of danshensu, rosmarinic acid and lithospermic acid. After oral administration of FT, the Cmax of danshensu and the AUC0-t of caffeic acid were increased significantly, suggesting that the presence of flavonoids may promote the absorption and exposure of phenolic acids in vivo. This study provides a reference for the elucidation of the in vivo substances and the mechanisms of action of FS and FT from the stem-leaf of Salvia miltiorrhiza.

9.
ChemSusChem ; : e202400601, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782717

ABSTRACT

The modular structure of small molecular acceptors (SMAs) allows for versatile modifications of the materials and boosts the photovoltaic efficiencies of organic solar cells (OSCs) in recent years. As a critical component, the endcaps of SMAs have been intensively investigated and modified to control the molecular aggregation and photo-electronic conversion. However, most of the studies focus on halogenation or π-fusion extension of the endcap moieties, but overlook the non-fused π-extension approach, which could be a promising strategy to balance the self-aggregation and compatibility behaviors. Herein, we reported two new acceptors namely BTP-Th and BTP-FTh based on non-fused π-extension of the endcap by chlorinated-thiophene, of which the latter molecule has better co-planarity and crystallinity because of the intramolecular noncovalent interactions. Paired with donor PBDB-T, the optimal device of BTP-FTh reveals a greater efficiency of 14.81% that that of BTP-Th (13.91%). Nevertheless, the BTP-Th based device realizes a lower energy loss, enabling BTP-Th as a good candidate to serve as guest acceptor. As a result, the ternary solar cells of PM6:BTP-eC9:BTP-Th output a champion efficiency up to 18.71% with enhanced open-circuit voltage. This study highlights the significance of rational decoration of endcaps for the design of high-performance SMAs and photovoltaic cells.

10.
Viruses ; 16(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38793564

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that causes severe abortions in sows and high piglet mortality, resulting in huge economic losses to the pig industry worldwide. The emerging and novel PRRSV isolates are clinically and biologically important, as there are likely recombination and pathogenic differences among PRRSV genomes. Furthermore, the NADC34-like strain has become a major epidemic strain in some parts of China, but the characterization and pathogenicity of the latest strain in Inner Mongolia have not been reported in detail. In this study, an NADC34-like strain (CHNMGKL1-2304) from Tongliao City, Inner Mongolia was successfully isolated and characterized, and confirmed the pathogenicity in pigs. The phylogenetic tree showed that this strain belonged to sublineage 1.5 and had high homology with the strain JS2021NADC34. There is no recombination between CHNMGKL1-2304 and any other domestic strains. Animal experiments show that the CHNMGKL1-2304 strain is moderately virulent to piglets, which show persistent fever, weight loss and high morbidity but no mortality. The presence of PRRSV nucleic acids was detected in both blood, tissues, nasal and fecal swabs. In addition, obvious pathological changes and positive signals were observed in lung, lymph node, liver and spleen tissues when subjected to hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). This report can provide a basis for epidemiological investigations and subsequent studies of PRRSV.


Subject(s)
Genome, Viral , Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine respiratory and reproductive syndrome virus/isolation & purification , Porcine respiratory and reproductive syndrome virus/classification , China , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Virulence , Evolution, Molecular
11.
Environ Sci Technol ; 58(20): 8736-8747, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38723264

ABSTRACT

Inland waters (rivers, lakes, and reservoirs) and wetlands (marshes and coastal wetlands) represent large and continuous sources of nitrous oxide (N2O) emissions, in view of adequate biomass and anaerobic conditions. Considerable uncertainties remain in quantifying spatially explicit N2O emissions from aquatic systems, attributable to the limitations of models and a lack of comprehensive data sets. Herein, we conducted a synthesis of 1659 observations of N2O emission rates to determine the major environmental drivers across five aquatic systems. A framework for spatially explicit estimates of N2O emissions in China was established, employing a data-driven approach that upscaled from site-specific N2O fluxes to robust multiple-regression models. Results revealed the effectiveness of models incorporating soil organic carbon and water content for marshes and coastal wetlands, as well as water nitrate concentration and dissolved organic carbon for lakes, rivers, and reservoirs for predicting emissions. Total national N2O emissions from inland waters and wetlands were 1.02 × 105 t N2O yr-1, with contributions from marshes (36.33%), rivers (27.77%), lakes (25.27%), reservoirs (6.47%), and coastal wetlands (4.16%). Spatially, larger emissions occurred in the Songliao River Basin and Continental River Basin, primarily due to their substantial terrestrial biomass. This study offers a vital national inventory of N2O emissions from inland waters and wetlands in China, providing paradigms for the inventorying work in other countries and insights to formulate effective mitigation strategies for climate change.


Subject(s)
Lakes , Nitrous Oxide , Wetlands , China , Nitrous Oxide/analysis , Lakes/chemistry , Environmental Monitoring , Rivers/chemistry
12.
J Phys Chem B ; 128(15): 3643-3651, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38588455

ABSTRACT

Ionizable lipid-containing lipid nanoparticles (LNPs) are regarded as promising nonviral vectors for gene therapy delivery systems. Rationale design of the ionizable lipid structure based on initial screening of ionizable lipid molecule libraries combined with systematic comparison and analysis on the physical chemical parameters related to delivery efficiency greatly accelerated the discovery of novel LNP candidates for delivering various nucleic acid therapeutics like mRNAs (mRNAs). Based on the copper-catalyzed azide-alkyne click reaction, which is highly efficient and biocompatible, we were able to obtain the lipid molecule library containing a common triazole moiety between different lipid tails and various substituents as hydrophilic head groups. Herein, we systematically investigated the change of pKa values of different ionizable lipid molecules with different substituents as head groups in the click-based lipid library, mapping the pKa value change to different steps in the process of the LNP assembly and mRNA delivery. Systematic analyses on the data including the pKa value of the ionized lipids and the encapsulation and delivery efficiency of mRNA in LNPs with these ionized lipids provided the possibility of rational design on the head and tail structure for the triazole containing ionized lipids to realize highly efficient delivery of different mRNAs.


Subject(s)
Lipids , Liposomes , Nanoparticles , RNA, Small Interfering/chemistry , RNA, Messenger , Lipids/chemistry , Nanoparticles/chemistry , Triazoles
13.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1044-1051, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621911

ABSTRACT

The animal and cell models were used in this study to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in inhibiting colon cancer progression and enhancing the efficacy of 5-fluorouracil(5-FU) by regulating hypoxia-inducible factors and tumor stem cells. The animal model was established by subcutaneous transplantation of colon cancer HCT116 cells in nude mice, and 24 successfully modeled mice were randomized into model, 5-FU, HQEZ, and 5-FU+HQEZ groups. The tumor volume was measured every two days. Western blot was employed to measure the protein levels of epidermal growth factor receptor(EGFR), dihydropyrimidine dehydrogenase(DPYD), and thymidylate synthase(TYMS), the key targets of the hypoxic core region, as well as the hypoxia-inducible factors HIF-1α and HIF-2α and the cancer stem cell surface marker CD133 and SRY-box transcription factor 2(SOX2). The results of animal experiments showed that HQEZ slowed down the tumor growth and significantly increased the tumor inhibition rate of 5-FU. Compared with the model group, HQEZ significantly down-regulated the protein levels of EGFR and DPYD, and 5-FU+HQEZ significantly down-regulated the protein levels of EGFR and TYMS in tumors. Compared with the model group, HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, SOX2, and CD133 in the hypoxic core region. Compared with the 5-FU group, 5-FU+HQEZ lowered the protein levels of HIF-1α, HIF-2α, and SOX2. The cell experiments showed that the protein le-vels of HIF-1α and HIF-2α in HCT116 cells elevated significantly after low oxygen treatment. Compared with 5-FU(1.38 µmol·L~(-1)) alone, HQEZ(40 mg·mL~(-1)) and 5-FU+HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, and TYMS. In conclusion, HQEZ can inhibit the expression of hypoxia-responsive molecules in colon cancer cells and reduce the properties of cancer stem cells, thereby enhancing the therapeutic effect of 5-FU on colon cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Colonic Neoplasms , Mice , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice, Nude , Fluorouracil/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Hypoxia , ErbB Receptors , Neoplastic Stem Cells , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor
14.
Expert Opin Investig Drugs ; : 1-10, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38662639

ABSTRACT

BACKGROUND: SHEN26, an oral broad-spectrum antiviral drug, possesses potent preclinical activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has a favorable safety profile. METHODS: We report safety, tolerability, and pharmacokinetic data from a randomized, double-blind, placebo-controlled phase I study of SHEN26. Eighty-six healthy subjects were enrolled in the three studies: a single ascending-dose study (SAD), a multiple ascending-dose study (MAD), and a food-effect study (FE). RESULTS: In the SAD trial, the maximum observed plasma concentration (Cmax) and area under the curve (AUC) of the SHEN26 rapid metabolite SHEN26-69-0 increased approximately dose-proportionally in the 50-400 mg fasting dose range. In the 800 mg dose group, standard meals increased the Cmax and AUC of SHEN26-69-0. In the MAD trial, the accumulation ratios of Cmax and AUC indicated slight accumulation upon repeated SHEN26 dosing. In the FE trial, a high-fat meal prolonged the time to maximum plasma concentration (Tmax) and increased the Cmax and AUC of SHEN26-69-0 compared with fasting administration. Most treatment-related adverse events were mild and resolved without treatment. CONCLUSION: SHEN26 demonstrated satisfactory safety and tolerability in healthy subjects, which supports the continued study of SHEN26 against SARS-CoV-2. TRIAL REGISTRATION: The trial is registered in ClinicalTrials.gov (CT. gov identifier: NCT05504746).

15.
J Cell Mol Med ; 28(8): e18327, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661437

ABSTRACT

Cartilage defects in the knee are often associated with the progression of degenerative osteoarthritis (OA), and cartilage repair is a useful strategy for managing this disease. However, cartilage repair is challenging because of the unique environment within the tissue. Recently, stem cell-based therapies have shed new light on this issue. In this study, we prepared exosomes (EXOs) from cartilage stem/progenitor cells (CSPCs) and found that treatment with EXOs increased the viability, migration, and proliferation of cultured primary chondrocytes. In a subacute OA rat model, the application of EXOs facilitated cartilage regeneration as evidenced by histological staining. Exosomal protein analysis together with bioinformatics suggested that cyclin-dependent kinase 9 (CDK9) is a key factor for chondrocyte growth and migration. Functional studies confirmed this prediction, that is, inhibiting CDK9 reduced the beneficial effects induced by EXOs in primary chondrocytes; while overexpression of CDK9 recapitulated the EXOs-induced phenotypes. RNA-Seq data showed that a set of genes involved in cell growth and migration were up-regulated by EXOs in chondrocytes. These changes could be partially reproduced by CDK9 overexpression. Overall, our data suggest that EXOs derived from primary CSPCs hold great therapeutic potential for treating cartilage defect-associated disorders such as degenerative OA, and that CDK9 is a key factor in this process.


Subject(s)
Cartilage, Articular , Cell Proliferation , Chondrocytes , Disease Models, Animal , Exosomes , Animals , Exosomes/metabolism , Rats , Chondrocytes/metabolism , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Stem Cells/metabolism , Stem Cells/cytology , Cell Movement , Rats, Sprague-Dawley , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinase 9/genetics , Osteoarthritis, Knee/metabolism , Osteoarthritis, Knee/pathology , Osteoarthritis, Knee/therapy , Male , Cells, Cultured , Regeneration , Osteoarthritis/pathology , Osteoarthritis/metabolism , Osteoarthritis/therapy
16.
Fitoterapia ; 175: 105945, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575091

ABSTRACT

Four previously undescribed isoprenoid flavonoids (2-5) were isolated from Sophora davidii, along with five known analogues. The structures of the compounds were established through comprehensive analysis of spectroscopic data, including HRESIMS, 1D and 2D NMR, and absolute configurations determined by theoretical calculations, including ECD and NMR calculation. The cytotoxic effects of the isolated compounds on human HT29 colon cancer cells were evaluated using the MTT assay, compound 1 exhibited cytotoxicity against human HT29 colon cancer cells with an IC50 value of 8.39 ± 0.09 µM. Studies conducted with compound 1 in HT29 cells demonstrated that it may induce apoptosis and autophagy in HT29 by promoting the phosphorylation of P38 MAPK and inhibiting the phosphorylation of Erk MAPK.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis , Autophagy , Flavonoids , Sophora , Humans , Sophora/chemistry , Autophagy/drug effects , Apoptosis/drug effects , HT29 Cells , Molecular Structure , Flavonoids/pharmacology , Flavonoids/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , China , p38 Mitogen-Activated Protein Kinases/metabolism , Terpenes/pharmacology , Terpenes/isolation & purification , Phosphorylation
17.
Sci Total Environ ; 929: 172622, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38642761

ABSTRACT

The phyllosphere is a vital yet often neglected habitat hosting diverse microorganisms with various functions. However, studies regarding how the composition and functions of the phyllosphere microbiome respond to agricultural practices, like nitrogen fertilization, are limited. This study investigated the effects of long-term nitrogen fertilization with different levels (CK, N90, N210, N330) on the functional genes and pathogens of the rice phyllosphere microbiome. Results showed that the relative abundance of many microbial functional genes in the rice phyllosphere was significantly affected by nitrogen fertilization, especially those involved in C fixation and denitrification genes. Different nitrogen fertilization levels have greater effects on fungal communities than bacteria communities in the rice phyllosphere, and network analysis and structural equation models further elucidate that fungal communities not only changed bacterial-fungal inter-kingdom interactions in the phyllosphere but also contributed to the variation of biogeochemical cycle potential. Besides, the moderate nitrogen fertilization level (N210) was associated with an enrichment of beneficial microbes in the phyllosphere, while also resulting in the lowest abundance of pathogenic fungi (1.14 %). In contrast, the highest abundance of pathogenic fungi (1.64 %) was observed in the highest nitrogen fertilization level (N330). This enrichment of pathogen due to high nitrogen level was also regulated by the fungal communities, as revealed through SEM analysis. Together, we demonstrated that the phyllosphere fungal communities were more sensitive to the nitrogen fertilization levels and played a crucial role in influencing phyllosphere functional profiles including element cycling potential and pathogen abundance. This study expands our knowledge regarding the role of phyllosphere fungal communities in modulating the element cycling and plant health in sustainable agriculture.


Subject(s)
Fertilizers , Fungi , Nitrogen , Oryza , Oryza/microbiology , Fungi/physiology , Mycobiome , Agriculture , Microbiota , Plant Leaves/microbiology
18.
Hepatology ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563629

ABSTRACT

BACKGROUND AND AIMS: Fibrosis is the common end point for all forms of chronic liver injury, and the progression of fibrosis leads to the development of end-stage liver disease. Activation of HSCs and their transdifferentiation into myofibroblasts results in the accumulation of extracellular matrix proteins that form the fibrotic scar. Long noncoding RNAs regulate the activity of HSCs and provide targets for fibrotic therapies. APPROACH AND RESULTS: We identified long noncoding RNA TILAM located near COL1A1 , expressed in HSCs, and induced with liver fibrosis in humans and mice. Loss-of-function studies in human HSCs and human liver organoids revealed that TILAM regulates the expression of COL1A1 and other extracellular matrix genes. To determine the role of TILAM in vivo, we annotated the mouse ortholog ( Tilam ), generated Tilam- deficient green fluorescent protein-reporter mice, and challenged these mice in 2 different models of liver fibrosis. Single-cell data and analysis of single-data and analysis of Tilam-deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Tilam -deficient reporter mice revealed that Tilam is induced in murine HSCs with the development of fibrosis in vivo. Furthermore, loss of Tilam expression attenuated the development of fibrosis in the setting of in vivo liver injury. Finally, we found that TILAM interacts with promyelocytic leukemia nuclear body scaffold protein to regulate a feedback loop by which TGF-ß2 reinforces TILAM expression and nuclear localization of promyelocytic leukemia nuclear body scaffold protein to promote the fibrotic activity of HSCs. CONCLUSIONS: TILAM is activated in HSCs with liver injury and interacts with promyelocytic leukemia nuclear body scaffold protein to drive the development of fibrosis. Depletion of TILAM may serve as a therapeutic approach to combat the development of end-stage liver disease.

19.
Heliyon ; 10(6): e28049, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515709

ABSTRACT

Anaphylaxis is a rare but well-known cause of sudden unexpected death, although data from forensic autopsies in anaphylactic deaths are limited. Herein, a retrospective study of a series of allergic deaths from 2009 through 2019 in Shanghai, China, was conducted to investigate the demographic, medical, and forensic pathological characteristics of fatal anaphylaxis to improve medicolegal understanding on anaphylactic death. Sixty-two autopsy cases of anaphylactic death were registered in this study. Males dominated the cases (74.2%) against females (25.8%), with an average age of 38.8 years. Medications (98.4%), particularly antibiotics (72.6%), were the most frequent cause of anaphylaxis, and 44 cases (71.0%) occurred in clinics administered illegally by unlicensed clinicians. The anaphylactic symptoms began within a few minutes to less than 1 h in 53 cases, with dyspnea (56.5%) and sudden shock (46.8%) being the most common clinical signs. Thirty cases (48.4%) of anaphylaxis resulted in death within 1 h. Laryngeal edema and multiple tissue eosinophil infiltration (85.5%) were the most prevalent autopsy findings, followed by pulmonary edema and congestion (24.2%), which were considered to be non-specific but suggestive. The comorbidities were mainly cardiovascular disease (33.9%), pneumonia (8.1%) and asthma (8.1%). Serum IgE were measured in 11 of 62 cases, ranging from 43.3 to 591 IU/ml, severed as a helpful marker. Therefore, we suggested a thorough analysis of allergen exposure, clinical history and autopsy findings is required for the diagnosis of anaphylactic death currently.

20.
Biomed Opt Express ; 15(3): 1571-1584, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38495683

ABSTRACT

Mitochondrial morphology provides unique insights into their integrity and function. Among fluorescence microscopy techniques, 3D super-resolution microscopy uniquely enables the analysis of mitochondrial morphological features individually. However, there is a lack of tools to extract morphological parameters from super-resolution images of mitochondria. We report a quantitative method to extract mitochondrial morphological metrics, including volume, aspect ratio, and local protein density, from 3D single-molecule localization microscopy images, with single-mitochondrion sensitivity. We validated our approach using simulated ground-truth SMLM images of mitochondria. We further tested our morphological analysis on mitochondria that have been altered functionally and morphologically in controlled manners. This work sets the stage to quantitatively analyze mitochondrial morphological alterations associated with disease progression on an individual basis.

SELECTION OF CITATIONS
SEARCH DETAIL
...