Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(10): e30910, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778933

ABSTRACT

According to the Standard of Chinese Medicinal Materials of Shaanxi Province (2015 edition), Salvia miltiorrhiza caulis et folium is the dried stems and leaves of Salvia miltiorrhiza, which could activate blood and dispell blood stasis, clear the mind and remove annoyance. In this study, the dynamic absorption changes of phenolic acids (FS) and phenolic acids-flavonoids (FT) in rats after oral administration were studied by UPLC-TQ/MS/MS, to elucidate the pharmacokinetics of seven major bioactive components of the stem-leaf of Salvia miltiorrhiza in vivo. The results showed that the pharmacokinetic parameters of FS and FT were significantly different in normal rats and model rats. Compared with the control group, after injecting 10 % polymer dextran 500 into the tail vein to establish a model of microcirculation disturbance, the Cmax of caffeic acid decreased. The Cmax of rosmarinic acid and lithospermic acid increased. Danshensu showed a decrease in CLz/F, accompanied by an increase in both AUC0-t and AUC0-∞. The AUC0-t of lithospermic acid was also increased. These results indicated that microcirculation disturbance could decrease the absorption of caffeic acid while increasing the absorption of danshensu, rosmarinic acid and lithospermic acid. After oral administration of FT, the Cmax of danshensu and the AUC0-t of caffeic acid were increased significantly, suggesting that the presence of flavonoids may promote the absorption and exposure of phenolic acids in vivo. This study provides a reference for the elucidation of the in vivo substances and the mechanisms of action of FS and FT from the stem-leaf of Salvia miltiorrhiza.

2.
Ann Hepatol ; 19(5): 535-540, 2020.
Article in English | MEDLINE | ID: mdl-32546442

ABSTRACT

INTRODUCTION AND OBJECTIVES: Hepatocellular carcinoma (HCC) is the second most lethal cancer around the world, with poor survival rate and high metastasis rate in patients. Long noncoding RNAs (lncRNAs) have been reported to modulate the initiation and development of liver cancer. We aimed to investigate the role of lncRNA MAGI2-AS3 in HCC and underlying mechanisms. MATERIALS AND METHODS: The expression levels of MAGI2-AS3 in plasma of HCC patients and the control participants were measured by qPCR. Hep3B and MHCC97-H cells were transfected with MAGI2-AS3 and ROCK2 expression vectors. Cell migration and invasion of HCC cells transfected with the vectors were investigated by transwell assay. In addition, flow cytometry and western blot were performed for apoptosis detection. RESULTS: We found that MAGI2-AS3 was downregulated in plasma of early stage HCC patients compared to healthy controls. After surgical resection, the expression levels of MAGI2-AS3 were increased compared to pretreatment levels on the day of discharge. During the follow-up, MAGI2-AS3 was downregulated in patients developed distant recurrence, but not in other patients compared to the levels measured on the day of discharge. In HCC cells, overexpression of MAGI2-AS3 mediated the downregulation of ROCK2. Cell invasion and migration assay showed that overexpression of MAGI2-AS3 mediated the decreased cell invasion and migration rate, while ROCK2 played an opposite role and attenuated the effects of overexpression of MAGI2-AS3. CONCLUSION: Our study indicated that MAGI2-AS3 was downregulated in the distant recurrence of HCC after surgical resection and affected the invasion and migration of HCC cells via ROCK2.


Subject(s)
Carcinoma, Hepatocellular/surgery , Cell Movement , Hepatectomy/adverse effects , Liver Neoplasms/surgery , RNA, Long Noncoding/metabolism , rho-Associated Kinases/metabolism , Adult , Aged , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/secondary , Case-Control Studies , Cell Line, Tumor , Down-Regulation , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Invasiveness , RNA, Long Noncoding/genetics , Signal Transduction , Treatment Outcome , rho-Associated Kinases/genetics
3.
BMC Complement Med Ther ; 20(1): 96, 2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32293402

ABSTRACT

BACKGROUND: Frankincense and myrrh are used as traditional anti-inflammatory and analgesic medicines in China. It has been reported that frankincense and myrrh have significant anti-tumor activities. The present study was designed to investigate the inhibitory efficacy of frankincense ethanol extracts (RXC), myrrh ethanol extracts (MYC), frankincense -myrrh ethanol extracts (YDC), frankincense -myrrh water extracts (YDS) and their main compounds on U266 human multiple myeloma cell line. METHODS: The inhibition effects of cell proliferation was evaluated by MTT assays. Cell culture supernatant was collected for estimation of cytokines. Western blot analysis was designed to investigate the regulatory of JAK/STAT signal pathway. In addition, cell metabolomics based on the ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) had been established to investigate the holistic efficacy of frankincense and myrrh on U266 cells. Acquired data were processed by partial least-squares discriminant analysis (PLS-DA) and orthogonal projection to latent structures squares-discriminant analysis (OPLS-DA) to identify potential biomarkers. RESULTS: RXC, MYC significantly inhibited the proliferation of U266 cells at dose of 25-400 µg/mL, YDC and YDS at the dose of 12.5-400 µg/mL. 3-O-acetyl-α-boswellic acid, 3-acetyl-11 keto-boswellic acid and 11-keto-boswellic acid had the most significant anti- multiple myeloma activities in the 10 compounds investigated, therefore these 3 compounds were selected as representatives for Elisa assay and western blotting experiments. All the extracts and active compounds ameliorated the secretion of cytokines and down-regulated the expression of JAK/STAT signaling pathway-related proteins. Comparing RXC, MYC, YDC and YDS-treated U266 cells with vehicle control (DMSO), 13, 8, 7, 7 distinct metabolites and 2, 2, 3, 0 metabolic target pathways involved in amino acid metabolism, lipid metabolism, vitamin metabolism, arachidonic acid were identified, respectively. CONCLUSIONS: Taken together our results suggest that the frankincense and myrrh and their bioactive compounds inhibit proliferation of U266 multiple myeloma cells by regulating JAK/STAT signaling pathway and cellular metabolic profile.


Subject(s)
Frankincense/pharmacology , Metabolome/drug effects , Multiple Myeloma/drug therapy , Plant Extracts/pharmacology , Signal Transduction/drug effects , Burseraceae/chemistry , Cell Line, Tumor , China , Frankincense/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , Humans , Janus Kinase 1/metabolism , Plant Extracts/chemistry , STAT3 Transcription Factor/metabolism
4.
Phytother Res ; 34(7): 1704-1720, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32185841

ABSTRACT

Microcirculation, which connects macrocirculation and cells between arterioles and venules, plays a major role in the early onset of a variety of diseases. In this article, a dextran-induced microcirculation dysfunction (MCDF) model rats were adopted to evaluate the effects and mechanism of Salvia miltiorrhiza stem-leaf extracts based on plasma and urine metabonomics. The results showed the effective components of S. miltiorrhiza stem-leaf could significantly improve the hemorheology and coagulation index of MCDF rats and callback the expression of endothelin-1 (ET-1), induciblenitric oxide synthase (iNOS), vascularendothelial growth factor (VEGF), P-Selectin, thromboxane A2, 6-keto-PGF1α , TNF-α, and interleukin-1ß to control group in MCDF rats. The decrease of microvessel density (MVD) in lung and thymus caused by MCDF was upgraded by Salvia miltiorrhiza stem-leaf. Based on the plasma and urine metabolic data, 20 potential biomarkers were identified. These biomarkers are mainly related to linoleic acid metabolism, glutathione metabolism, pantothenate and coenzyme A biosynthesis, pentose and glucuronate interconversions, pyruvate metabolism, glyoxylate and dicarboxylate metabolism, beta-alanine metabolism, and citrate cycle. The results indicated that the effective components of S. miltiorrhiza stem-leaf can improve the hemorheological disorder and vascular endothelial function. Meanwhile, the effective components can regulate potential biomarkers and correlated metabolic pathway, which can provide guidance for the research and development of new drugs for MCDF.


Subject(s)
Alkenes/chemistry , Endothelial Cells/drug effects , Flavonoids/chemistry , Hemorheology/drug effects , Microcirculation/drug effects , Plant Leaves/chemistry , Plant Stems/chemistry , Polyphenols/chemistry , Salvia miltiorrhiza/chemistry , Animals , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...