Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Direct ; 6(1): e380, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35106435

ABSTRACT

Arabidopsis CHLOROPLAST IMPORT APPARATUS 2 (CIA2) and its paralogous protein CIA2-LIKE (CIL) are nuclear transcription factors containing a C-terminal CCT motif. CIA2 promotes the expression of nuclear genes encoding chloroplast-localized translocons and ribosomal proteins, thereby increasing the efficiency of protein import and synthesis in chloroplasts. We have previously reported that CIA2 and CIL form a homodimer or heterodimer through their C-terminal sequences and interact with other nuclear proteins, such as CONSTANS (CO), via their N-terminal sequences, but the function of CIL had remained unclear. In this study, we verified through transgenic cia2 mutant plants expressing the CIL coding sequence that CIL is partially functionally redundant to CIA2 during vegetative growth. We also compared phenotypes and gene expression profiles of wildtype Col-0, cia2, cil, and cia2/cil mutants. Our results indicate that CIA2 and CIL coordinate chloroplast biogenesis and function mainly by upregulating the expression of the nuclear factor GOLDEN2-LIKE 1 (GLK1) and chloroplast transcription-, translation-, protein import-, and photosynthesis-related genes, with CIA2 playing a more crucial role. Furthermore, we compared flowering phenotypes in single, double, and triple mutant plants of co, cia2, and cil. We found that CIA2 and CIL participate in modulating long-day floral development. Notably, CIA2 increases flower number and height of the inflorescence main axis, whereas CIL promotes flowering.

2.
Bot Stud ; 61(1): 20, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32556735

ABSTRACT

BACKGROUND: A previous screening of Arabidopsis thaliana for mutants exhibiting dysfunctional chloroplast protein transport identified the chloroplast import apparatus (cia) gene. The cia2 mutant has a pale green phenotype and reduced rate of protein import into chloroplasts, but leaf shape and size are similar to wild-type plants of the same developmental stage. Microarray analysis showed that nuclear CIA2 protein enhances expression of the Toc75, Toc33, CPN10 and cpRPs genes, thereby up-regulating protein import and synthesis efficiency in chloroplasts. CIA2-like (CIL) shares 65% sequence identity to CIA2, suggesting that CIL and CIA2 are homologous proteins in Arabidopsis. Here, we further assess the protein interactions and sequence features of CIA2 and CIL. RESULTS: Subcellular localizations of truncated CIA2 protein fragments in our onion transient assay demonstrate that CIA2 contains two nuclear localization signals (NLS) located at amino acids (aa) 62-65 and 291-308, whereas CIL has only one NLS at aa 47-50. We screened a yeast two-hybrid (Y2H) Arabidopsis cDNA library to search for putative CIA2-interacting proteins and identified 12 nuclear proteins, including itself, CIL, and flowering-control proteins (such as CO, NF-YB1, NF-YC1, NF-YC9 and ABI3). Additional Y2H experiments demonstrate that CIA2 and CIL mainly interact with flowering-control proteins via their N-termini, but preferentially form homo- or hetero-dimers through their C-termini. Moreover, sequence alignment showed that the N-terminal sequences of CIA2, CIL and NF-YA are highly conserved. Therefore, NF-YA in the NF-Y complex could be substituted by CIA2 or CIL. CONCLUSIONS: We show that Arabidopsis CIA2 and CIL can interact with CO and NF-Y complex, so not only may they contribute to regulate chloroplast function but also to modulate flower development.

3.
PLoS One ; 13(10): e0205265, 2018.
Article in English | MEDLINE | ID: mdl-30356295

ABSTRACT

BACKGROUND: Insect galls are atypical plant tissues induced by the invasion of insects. Compared to the host leaf, gall tissues lose photosynthetic ability, but have higher soluble sugar content. Although the physiological and biochemical regulation of gall tissues have been demonstrated, the mechanism of genetic regulation has only been analyzed in few studies. RESULTS: In this study, the transcriptome of cup-shaped galls and its host leaf were de novo assembled. Cellular functional enrichment and differentially expressed gene groups in the gall tissues were analyzed. The genes associated with primary metabolism, including photosynthesis, cell wall turnover, and sugar degradation, were expressed differently in galls and leaves. The examination of gene expression demonstrated that the genes involved in brassinosteroid synthesis and responses exhibited a remarkable modulation in cup-shaped galls, suggesting a potential role of steroid hormones in regulating gall development. CONCLUSIONS: This study revealed the genetic responses, including those involved in source-sink reallocation and phytohormone metabolism, of galls induced by a dipteran insect.


Subject(s)
Litsea/genetics , Plant Proteins/genetics , Plant Tumors/genetics , Transcriptome/genetics , Animals , Carbohydrate Metabolism , Diptera/genetics , Diptera/pathogenicity , Gene Expression Profiling/methods , Host-Parasite Interactions/genetics , Litsea/parasitology , Photosynthesis/genetics , Plant Leaves/genetics , Plant Tumors/parasitology
4.
Sci Rep ; 7(1): 5341, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28706224

ABSTRACT

Genetic variation evolves during postglacial range expansion of a species and is important for adapting to varied environmental conditions. It is crucial for the future survival of a species. We investigate the nuclear DNA sequence variation to provide evidence of postglacial range expansion of Musa basjoo var. formosana, a wild banana species, and test for adaptive evolution of amplified fragment length polymorphic (AFLP) loci underlying local adaptation in association with environmental variables. Postglacial range expansion was suggested by phylogeographical analyses based on sequence variation of the second intron of copper zinc superoxide dismutase 2 gene. Two glacial refugia were inferred by the average F ST parameter (mean F ST of a population against the remaining populations). Using variation partitioning by redundancy analysis, we found a significant amount of explained AFLP variation attributed to environmental and spatially-structured environmental effects. By combining genome scan methods and multiple univariate logistic regression, four AFLP loci were found to be strongly associated with environmental variables, including temperature, precipitation, soil moisture, wet days, and surface coverage activity representing vegetation greenness. These environmental variables may have played various roles as ecological drivers for adaptive evolution of M. basjoo var. formosana during range expansion after the last glacial maximum.


Subject(s)
Ecosystem , Musa/growth & development , Plant Dispersal , Adaptation, Biological , Amplified Fragment Length Polymorphism Analysis , Climate , DNA, Plant/genetics , Genetic Variation , Genetics, Population , Musa/classification , Musa/genetics , Phylogeography
5.
Bot Stud ; 54(1): 40, 2013 Dec.
Article in English | MEDLINE | ID: mdl-28510882

ABSTRACT

BACKGROUND: Accurate import of thousands of nuclear-encoded proteins is an important step in plastid biogenesis. However, the import machinery of cytosolic precursor proteins to plastids relies on the Toc and Tic (translocons on the outer envelope and inner envelope membrane of chloroplasts) complexes. Toc159 protein was identified in pea (Pisum sativum) as a major receptor for the precursor proteins. In Arabidopsis thaliana, four psToc159 homologs are identified, termed atToc159, atToc132, atToc120 and atToc90. The expression of these protein-encoding genes has to be properly regulated, because their gene products must be correctly integrated to appropriate apparatus to perform their functions. RESULTS: In order to elucidate the regulatory mechanisms of atTOC159 homologous gene expression, transgenes containing various lengths of the upstream regulatory sequences of atTOC159/atTOC132/atTOC120/atTOC90 and GUS coding sequence were transferred to wild type Arabidopsis. In accordance with the analysis of GUS activity in these transgenic plants at various developmental stages, these homologous genes had distinct expression patterns. AtTOC159 and atTOC90 are preferentially expressed in above-ground tissues, such as cotyledons and leaves. In mature roots, atTOC159 and atTOC132 are expressed at higher levels, while atTOC120 and atTOC90 are expressed at the basal level. All four genes have increased expression level during flower and fruit development, particularly a remarkably high expression level of atTOC159 in later stage of fruit development. Furthermore, leader intron in the 5' UTR induces the expression level of atTOC159 members in a tissue-specific manner. This is able to up-regulate the atTOC120 expression in roots/leaves/flowers, and the atTOC90 expression in cotyledons/leaves/anthers. CONCLUSIONS: The differential expression of atTOC159 gene members is essential during plastid development, because proper atToc159 isoforms are required to import distinct proteins to the plastids of different tissues.

6.
Plant Physiol ; 150(2): 879-88, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19386807

ABSTRACT

Plastid biogenesis and maintenance depend on the coordinated assembly of proteins imported from the cytosol with proteins translated within plastids. Chloroplasts in leaf cells have a greater need for protein import and protein synthesis than plastids in other organs due to the large amount of proteins required for photosynthesis. We previously reported that the Arabidopsis (Arabidopsis thaliana) transcription factor CIA2 specifically up-regulates leaf expression of genes encoding protein translocons Toc33 and Toc75, which are essential for protein import into chloroplasts. Protein import efficiency was therefore reduced in cia2 mutant chloroplasts. To further understand the function of CIA2, gene expression profiles of the wild type and a cia2 mutant were compared by microarray analysis. Interestingly, in addition to genes encoding protein translocon components, other genes down-regulated in cia2 almost exclusively encode chloroplast ribosomal proteins. Isolated cia2 mutant chloroplasts showed reduced translation efficiency and steady-state accumulation of plastid-encoded proteins. When CIA2 was ectopically expressed in roots, expression of both the protein translocon and ribosomal protein genes increased. Further analyses in vivo revealed that CIA2 up-regulated these genes by binding directly to their promoter regions. We propose that CIA2 is an important factor responsible for fulfilling the higher protein demands of leaf chloroplasts by coordinately increasing both protein import and protein translation efficiencies.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chloroplasts/metabolism , Plant Leaves/metabolism , Protein Biosynthesis , Transcription Factors/metabolism , Up-Regulation , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplast Proteins , Down-Regulation/genetics , Gene Expression Regulation, Plant , Genes, Plant , Molecular Sequence Data , Organ Specificity , Phenotype , Pigments, Biological/metabolism , Plant Leaves/genetics , Promoter Regions, Genetic/genetics , Protein Binding , Protein Transport , Reproducibility of Results , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Transcription Factors/genetics , Up-Regulation/genetics
7.
Plant Physiol ; 135(3): 1314-23, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15266056

ABSTRACT

Using a transgene-based screening, we previously isolated several Arabidopsis mutants defective in protein import into chloroplasts. Positional cloning of one of the loci, CIA1, revealed that CIA1 encodes Gln phosphoribosyl pyrophosphate amidotransferase 2 (ATase2), one of the three ATase isozymes responsible for the first committed step of de novo purine biosynthesis. The cia1 mutant had normal green cotyledons but small and albino/pale-green mosaic leaves. Adding AMP, but not cytokinin or NADH, to plant liquid cultures partially complemented the mutant phenotypes. Both ATase1 and ATase2 were localized to chloroplasts. Overexpression of ATase1 fully complemented the ATase2-deficient phenotypes. A T-DNA insertion knockout mutant of the ATase1 gene was also obtained. The mutant was indistinguishable from the wild type. A double mutant of cia1/ATase1-knockout had the same phenotype as cia1, suggesting at least partial gene redundancy between ATase1 and ATase2. Characterizations of the cia1 mutant revealed that mutant leaves had slightly smaller cell size but only half the cell number of wild-type leaves. This phenotype confirms the role of de novo purine biosynthesis in cell division. Chloroplasts isolated from the cia1 mutant imported proteins at an efficiency less than 50% that of wild-type chloroplasts. Adding ATP and GTP to isolated mutant chloroplasts could not restore the import efficiency. We conclude that de novo purine biosynthesis is not only important for cell division, but also for chloroplast biogenesis.


Subject(s)
Amidophosphoribosyltransferase/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Gene Deletion , Amidophosphoribosyltransferase/genetics , Amino Acid Sequence , Animals , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cloning, Molecular , Conserved Sequence , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Plant/genetics , Humans , Molecular Sequence Data , Protein Biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...