Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(2): 1764-1775, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297721

ABSTRACT

Optoelectronic integrated circuits (OEICs) have enhanced integration and communication capabilities in various applications. With the continued increase in complexity and scale, the need for an accurate and efficient simulation environment compatible with photonics and electronics becomes paramount. This paper introduces a method using the Verilog-A hardware language in the electronic design automation (EDA) platform to create equivalent circuit and compact models for photonic devices, considering their dispersion, polarization, multimode, and bidirectional transmission characteristics. These models can be co-simulated alongside electrical components in the electronic simulator, covering both the time and frequency domains simultaneously. Model parameters can be modified at any stage of the design process. Using the full link of an optoelectronic transceiver as an example, analyses from our Verilog-A model system show a mean absolute percentage error of 1.55% in the time-domain and 0.0318% in the frequency-domain when compared to the commercial co-simulation system (e.g., Virtuoso-INTERCONNECT). This underscores the accuracy and efficiency of our approach in OEICs design. By adopting this method, designers are enabled to conduct both electrical-specific and photonic-specific circuit analyses, as well as perform optoelectronic co-simulation within a unified platform seamlessly.

2.
J Opt Soc Am A Opt Image Sci Vis ; 39(1): 32-36, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35200974

ABSTRACT

In this paper, an efficient modeling method for a photonics-focusing grating coupler is proposed and studied. The focusing grating coupler can be divided into two parts: the cylindrical coordinate slab waveguide and the Cartesian coordinate slab waveguide. Using the cylindrical slab modes and the two-dimensional complex mode-matching method, we can obtain the efficient compact model for the focusing grating coupler. This model reduces the three-dimensional structure into a two-dimensional structure by using the effective index method to reduce the computation time as well as the computational resources. The simulation result, which is dependent on the finite-difference time-domain method, demonstrates the accuracy of the advanced compact model. This model can also be integrated into the circuit simulation.

3.
Opt Lett ; 45(21): 5917-5920, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33137031

ABSTRACT

Strong magneto-optical effect with low external magnetic field is of great importance to achieve high-performance isolators in modern optics. Here, we experimentally demonstrate a significant enhancement of the magneto-optical effect and nonreciprocal chiral transmission in low-biased gyrotropic media. A designer magneto-optical metasurface consists of a gyrotropy-near-zero slab doped with magnetic resonant inclusions. The immersed magnetic dopants enable efficient nonreciprocal light-matter interactions at the subwavelength scale, providing a giant macroscopic nonreciprocity and strong robustness against the bias disturbance. Microwave measurements reveal that the metasurface can act as a chiral isolator for circular polarization, with extremely weak intrinsic gyromagnetic activity. We also demonstrate its capability of signal isolation for circularly polarized antennas. Our findings provide an experimental verification of nonreciprocal photonic doping with low static magnetic fields.

4.
Opt Express ; 27(26): 38029-38038, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878575

ABSTRACT

Chiral metamirror is one of the recently developed metadevices which can reflect designated circularly polarized waves, mimicking the exoskeleton of iridescent green beetles. Here, an optically transparent metamirror that can absorb microwave chiral photons in a broadband spectrum is demonstrated. A coupled mode theory is adopted to reveal the underlying physics for the improved bandwidth performance. Excellent agreements have been observed between numerical and experimental results, indicating a bandwidth for chiral absorption as high as 2.37 GHz. The optical transparence of the resistive patterns and substrate make the designed metamirrors suitable as microwave coatings in front of optical devices, which may find potential applications in cascaded optical systems working for both microwave and optical signals.

SELECTION OF CITATIONS
SEARCH DETAIL
...