Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Mol Breed ; 44(5): 32, 2024 May.
Article in English | MEDLINE | ID: mdl-38685957

ABSTRACT

Compared to japonica, the lower genetic transformation efficiency of indica is a technical bottleneck for rice molecular breeding. Specifically, callus browning frequently occurs during the culture of the elite indica variety 93-11, leading to poor culturability and lower genetic transformation efficiency. Here, 67 QTLs related to culturability were detected using 97 introgression lines (designated as 9DILs) derived from Dongxiang common wild rice (DXCWR, Oryza rufipogon Griff.) with 93-11 genetic background, explaining 4% ~12% of the phenotypic variations. The QTL qCBT9 on chromosome 9 was a primary QTL for reducing callus browning derived from DXCWR. Five 9DILs with light callus browning and high differentiation were screened. We evaluated the callus browning index (CBI) of 100 F2 population crossed of 93-11 and 9DIL71 and the recombinant plants screened from 3270 individuals. The qCBT9 was delimited to a ~148kb region between the markers X16 and X23. RNA-seq analysis of DEGs between 9DIL71 and 93-11 showed three upregulated DEGs (Os09g0526500, Os09g0527900, Os09g0528200,) and three downregulated DEGs (Os09g0526700, Os09g0526800, Os09g0527700) were located in the candidate region of qCBT9. Furthermore, callus browning may be involved in cell senescence and death caused by oxidative stress. The differentiation of indica and japonica in this region suggested that qCBT9 was possibly a vital QTL contributed to better culturability of japonica. Our results laid a foundation for further cloning of the gene for reduced callus browning in O. rufipogon, and also provided a new genetic resource and material basis for improving the culturability and genetic transformation efficiency of cultivated rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01470-z.

2.
New Phytol ; 240(1): 372-381, 2023 10.
Article in English | MEDLINE | ID: mdl-37475167

ABSTRACT

Surface-localized pattern recognition receptors perceive pathogen-associated molecular patterns (PAMPs) to activate pattern-triggered immunity (PTI). Activation of mitogen-activated protein kinases (MAPKs) represents a major PTI response. Here, we report that Arabidopsis thaliana PIF3 negatively regulates plant defense gene expression and resistance to Pseudomonas syringae DC3000. PAMPs trigger phosphorylation of PIF3. Further study reveals that PIF3 interacts with and is phosphorylated by MPK3/6. By mass spectrometry and site-directed mutagenesis, we identified the corresponding phosphorylation sites which fit for SP motif. We further show that a phospho-mimicking PIF3 variant (PIF36D /pifq) conferred increased susceptibility to P. syringae DC3000 and caused lower levels of defense gene expression in plants. Together, this study reveals that PIF3 is phosphorylated by MPK3/6 and phosphorylation of the SP motif residues is required for its negative regulation on plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Mitogen-Activated Protein Kinases/metabolism , Arabidopsis/metabolism , Plant Immunity/genetics , Pseudomonas syringae/physiology , Plant Diseases , Gene Expression Regulation, Plant , Basic Helix-Loop-Helix Transcription Factors/metabolism
3.
Nat Commun ; 14(1): 3098, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248234

ABSTRACT

During the processes of rice domestication and improvement, a trade-off effect between grain number and grain weight was a major obstacle for increasing yield. Here, we identify a critical gene COG1, encoding the transcription factor OsMADS17, with a 65-bp deletion in the 5' untranslated region (5' UTR) presented in cultivated rice increasing grain number and grain weight simultaneously through decreasing mRNA translation efficiency. OsMADS17 controls grain yield by regulating multiple genes and that the interaction with one of them, OsAP2-39, has been characterized. Besides, the expression of OsMADS17 is regulated by OsMADS1 directly. It indicates that OsMADS1-OsMADS17-OsAP2-39 participates in the regulatory network controlling grain yield, and downregulation of OsMADS17 or OsAP2-39 expression can further improve grain yield by simultaneously increasing grain number and grain weight. Our findings provide insights into understanding the molecular basis co-regulating rice yield-related traits, and offer a strategy for breeding higher-yielding rice varieties.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Plant Breeding , Edible Grain/genetics , Transcription Factors/metabolism , Phenotype
4.
Plant Biotechnol J ; 21(5): 931-942, 2023 05.
Article in English | MEDLINE | ID: mdl-36610008

ABSTRACT

African cultivated rice (Oryza glaberrima Steud.) was domesticated from its wild progenitor species (Oryza barthii) about 3000 years ago. Seed shattering is one of the main constraints on grain production in African cultivated rice, which causes severe grain losses during harvest. By contrast, Asian cultivated rice (Oryza sativa) displays greater resistance to seed shattering, allowing higher grain production. A better understanding in regulation of seed shattering would help to improve harvesting efficiency in African cultivated rice. Here, we report the map-based cloning and characterization of OgSH11, a MYB transcription factor controlling seed shattering in O. glaberrima. OgSH11 represses the expression of lignin biosynthesis genes and lignin deposition by binding to the promoter of GH2. We successfully developed a new O. glaberrima material showing significantly reduced seed shattering by knockout of SH11 in O. glaberrima using CRISPR-Cas9 mediated approach. Identification of SH11 not only supplies a new target for seed shattering improvement in African cultivated rice, but also provides new insights into the molecular mechanism of abscission layer development.


Subject(s)
Oryza , Lignin/genetics , Seeds , Edible Grain/genetics , Transcription Factors/genetics
5.
Mol Biol Rep ; 50(4): 3129-3140, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36692673

ABSTRACT

BACKGROUND: Genetic transformation of indica rice (Oryza sativa ssp. indica) is limited by callus browning, which results in poor in vitro tissue culturability. Elucidating the genes in common wild rice (Oryza rufipogon Griff.) that control callus browning is fundamental for improving the tissue culturability of indica rice varieties. METHODS AND RESULTS: We used a population of 129 O. rufipogon (Dongxiang common wild rice; DXCWR) introgression lines in the elite cultivar GC2 (Oryza sativa ssp. indica) background and 159 simple sequence repeat (SSR) markers to identify quantitative trait loci (QTLs) associated with callus browning. We evaluated callus browning based on the indices of callus browning rate (CBR), callus browning index (CBI), and standard callus browning index (SCBI). CONCLUSIONS: We detected 30 QTLs associated with callus browning across all lines, mapping to chromosomes 1, 2, 3, 4, 8, 9, and 12. These genomic regions were repeatedly associated with differences in CBR, CBI, and SCBI. The alleles from DXCWR showed additive effects in reducing callus browning. We identified new QTLs near the markers RM247 and RM7003 on chromosome 12, indicating that these QTLs are unique to DXCWR. Furthermore, we identified six introgression lines with significantly lower callus browning. These lines will be useful germplasms for genetic transformation and fine-mapping of the culturability trait.


Subject(s)
Oryza , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Oryza/genetics , Chromosomes, Plant/genetics , Phenotype , Alleles
6.
Plant Mol Biol ; 111(3): 263-273, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36414883

ABSTRACT

Zinc (Zn) deficiency, caused by inadequate Zn intake in the human diet, has serious health implications. Rice (Oryza sativa) is the staple food in regions with a high incidence of Zn deficiency, so raising Zn levels in rice grain could help alleviate Zn deficiency. The wild relatives of cultivated rice vary widely in grain Zn content and thus are suitable resources for improving this trait. However, few loci underlying grain Zn content have been identified in wild rice relatives. Here, we identified a major quantitative trait locus for grain Zn content, Grain Zn Content 1 (qGZnC1), from Yuanjiang common wild rice (Oryza rufipogon Griff.) using map-based cloning. Down-regulating GZnC1 expression reduced the grain Zn content, whereas the presence of GZnC1 had the opposite effect, indicating that GZnC1 is involved in grain Zn content in rice. Notably, GZnC1 is identical to a previously reported gene, EMBRYO SAC ABORTION 1 (ESA1), involved in seed setting rate. The mutation in GZnC1/ESA1 at position 1819 (T1819C) causes delayed termination of protein translation. In addition, GZnC1 is specifically expressed in developing panicles. Several genes related to Zn-transporter genes were up-regulated in the presence of GZnC1. Our results suggest that GZnC1 activates Zn transporters to promote Zn distribution in panicles. Our work thus sheds light on the genetic mechanism of Zn accumulation in rice grain and provides a new genetic resource for improving Zn content in rice.


Subject(s)
Oryza , Humans , Oryza/genetics , Edible Grain/genetics , Quantitative Trait Loci , Phenotype , Zinc/metabolism
7.
ACS Appl Mater Interfaces ; 14(34): 39053-39061, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35984410

ABSTRACT

Artificially tilted multilayer thermoelectric devices (ATMTDs) have attracted extensive attention because of their numerous advantages, such as high integration, great structural freedom, and large transverse Seebeck coefficients. ATMTDs are composed of numerous alternating stackings of two types of materials with large differences in electrical and thermal transport. Therefore, it is of great interest to find ATMTDs with both high transverse thermoelectric performance and good interfacial stability to develop their practical application. In this work, cobalt (Co) and Bi0.5Sb1.5Te3 (BST) are chosen to prepare Co/BST ATMTDs. The interfacial structure and composition of Co/BST are characterized, and its interfacial stability and transverse thermoelectric performance are evaluated. The results show that the thickness of the Co/BST interfacial reaction layer is about 4 µm. Annealing at 473 K for 32 h does not increase the thickness, which indicates better interfacial stability than Ni/BST. After structure optimization, Co/BST ATMTD has ZTzx = 0.41, which is second only to YbAl3/BST ATMTDs. Meanwhile, the transverse Seebeck coefficient reaches -120.38 µV/K. The outstanding interfacial stability and transverse thermoelectric performance promise excellent thermal response and refrigeration performance with Co/BST ATMTDs.

8.
Comput Intell Neurosci ; 2022: 6366061, 2022.
Article in English | MEDLINE | ID: mdl-35755745

ABSTRACT

To reduce the carbon emission intensity of resource-based cities and strengthen the sustainable development of these cities, firstly, blockchain technology is analyzed. Secondly, the development of the digital economy is discussed in digital resource-based cities. Finally, according to blockchain technology, a model of carbon emissions trading in the digital economy is designed, and the specific impact of the digital economy on carbon emissions trading is studied according to the model. The research results show that the mean value of the development index of the digital economy (digital) is -0.0168, the maximum value is 4.2560, the minimum value is -1.3429, and the standard deviation is 0.9572, indicating that the quality of digital economy development varies greatly among different regions. And according to the results of the digital model, it is found that the regression coefficient of the variable digital is significantly negative at the 1% level, showing that the digital economy will obviously suppress the carbon emission intensity of cities. After replacing the explained variables, the coefficient of the digital economy is still significantly negative. It indicates that the development of the digital economy can effectively suppress the carbon emission intensity of urban. Therefore, the designed model of carbon emissions trading under the blockchain technology can not only provide a secure platform for carbon emissions trading but also provide more comprehensive trading reference information for carbon emissions trading. It provides technical support for reducing the carbon emission intensity of resource-based cities and also contributes to the development of resource-based cities.


Subject(s)
Blockchain , Carbon , Carbon/analysis , China , Cities , Technology
9.
J Genet Genomics ; 49(5): 427-436, 2022 05.
Article in English | MEDLINE | ID: mdl-35231639

ABSTRACT

African cultivated rice, Oryza glaberrima, is characterized by its glabrous glumes. During domestication, the pubescent glumes of its wild ancestor, Oryza barthii, lost their trichomes, and in this study, we show that glabrous glume 5 (GLAG5), a WUSCHEL-like homeobox transcription factor gene on chromosome 5, is required for trichome development. DNA methylation associated with an hAT transposable element inserted in the promoter region of GLAG5 is found to reduce its expression, leading to the formation of glabrous glumes and leaves in African cultivated rice. Among 82 African cultivated rice varieties investigated in this study, 59 (approximately 71%) lines exhibit glabrous glumes and harbor the hAT transposon; however, the other 23 varieties (approximately 29%), which exhibit pubescent glumes, lack the hAT transposon, indicating that glag5 had undergone strong artificial selection. The πw/πc ratios also show the hAT transposon insertions influence the genetic diversity of an approximately 150-kb interval encompassing the GLAG5 locus. The identification of the GLAG5 gene provides new insights into the domestication of cultivated rice in Africa. We speculate that the selection of varieties with mutations in their promoter regions is an important aspect of crop domestication.


Subject(s)
Domestication , Oryza , Africa , Genetic Variation , Mutation , Oryza/genetics
10.
Science ; 375(6587): eabg7985, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35324310

ABSTRACT

A better understanding of the extent of convergent selection among crops could greatly improve breeding programs. We found that the quantitative trait locus KRN2 in maize and its rice ortholog, OsKRN2, experienced convergent selection. These orthologs encode WD40 proteins and interact with a gene of unknown function, DUF1644, to negatively regulate grain number in both crops. Knockout of KRN2 in maize or OsKRN2 in rice increased grain yield by ~10% and ~8%, respectively, with no apparent trade-offs in other agronomic traits. Furthermore, genome-wide scans identified 490 pairs of orthologous genes that underwent convergent selection during maize and rice evolution, and these were enriched for two shared molecular pathways. KRN2, together with other convergently selected genes, provides an excellent target for future crop improvement.


Subject(s)
Edible Grain , Oryza , Plant Proteins/genetics , Selection, Genetic , WD40 Repeats , Zea mays , Edible Grain/genetics , Genes, Plant , Oryza/genetics , Phylogeny , Plant Breeding , Plant Proteins/classification , WD40 Repeats/genetics , Zea mays/genetics
11.
J Genet Genomics ; 49(5): 458-468, 2022 05.
Article in English | MEDLINE | ID: mdl-35144028

ABSTRACT

Soil salinity inhibits seed germination and reduces seedling survival rate, resulting in significant yield reductions in crops. Here, we report the identification of a polyamine oxidase, OsPAO3, conferring salt tolerance at the germination stage in rice (Oryza sativa L.), through map-based cloning approach. OsPAO3 is up-regulated under salt stress at the germination stage and highly expressed in various organs. Overexpression of OsPAO3 increases activity of polyamine oxidases, enhancing the polyamine content in seed coleoptiles. Increased polyamine may lead to the enhance of the activity of ROS-scavenging enzymes to eliminate over-accumulated H2O2 and to reduce Na+ content in seed coleoptiles to maintain ion homeostasis and weaken Na+ damage. These changes resulted in stronger salt tolerance at the germination stage in rice. Our findings not only provide a unique gene for breeding new salt-tolerant rice cultivars but also help to elucidate the mechanism of salt tolerance in rice.


Subject(s)
Oryza , Salt Tolerance , Germination/genetics , Hydrogen Peroxide , Oryza/genetics , Oxidoreductases Acting on CH-NH Group Donors , Plant Breeding , Polyamines , Salt Tolerance/genetics , Seedlings/genetics , Polyamine Oxidase
12.
Plant Biotechnol J ; 19(1): 64-73, 2021 01.
Article in English | MEDLINE | ID: mdl-32628357

ABSTRACT

Tiller angle, an important component of plant architecture, greatly influences the grain yield of rice (Oryza sativa L.). Here, we identified Tiller Angle Control 4 (TAC4) as a novel regulator of rice tiller angle. TAC4 encodes a plant-specific, highly conserved nuclear protein. The loss of TAC4 function leads to a significant increase in the tiller angle. TAC4 can regulate rice shoot gravitropism by increasing the indole acetic acid content and affecting the auxin distribution. A sequence analysis revealed that TAC4 has undergone a bottleneck and become fixed in indica cultivars during domestication and improvement. Our findings facilitate an increased understanding of the regulatory mechanisms of tiller angle and also provide a potential gene resource for the improvement of rice plant architecture.


Subject(s)
Oryza , Gene Expression Regulation, Plant , Gravitropism , Indoleacetic Acids , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
13.
J Exp Bot ; 72(4): 1212-1224, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33097962

ABSTRACT

Photosynthesis and plant architecture are important factors influencing grain yield in rice (Oryza sativa L.). Here, we identified a high-tillering and dwarf 12 (htd12) mutant and analyzed the effects of the HTD12 mutation on these important factors. HTD12 encodes a 15-cis-ζ-carotene isomerase (Z-ISO) belonging to the nitrite and nitric oxide reductase U (NnrU) protein family, as revealed by positional mapping and transformation experiments. Sequence analysis showed that a single nucleotide transition from guanine (G) to adenine (A) in the 3' acceptor site between the first intron and second exon of HTD12 alters its mRNA splicing in htd12 plants, resulting in a 49-amino acid deletion that affects carotenoid biosynthesis and photosynthesis. In addition, compared with the wild type, htd12 had significantly lower concentrations of ent-2'-epi-5-deoxystrigol (epi-5DS), a native strigolactone, in both roots and root exudates, resulting in an obvious increase in tiller number and decrease in plant height. These findings indicate that HTD12, the rice homolog of Z-ISO, regulates chloroplast development and photosynthesis by functioning in carotenoid biosynthesis, and modulates plant architecture by affecting strigolactone concentrations.


Subject(s)
Oryza , Photosynthesis , Plant Proteins/physiology , cis-trans-Isomerases/physiology , Amino Acid Sequence , Carotenoids/metabolism , Gene Expression Regulation, Plant , Mutation , Oryza/enzymology , Oryza/genetics , Plant Proteins/genetics , cis-trans-Isomerases/genetics
14.
Plant J ; 104(3): 596-612, 2020 11.
Article in English | MEDLINE | ID: mdl-32748498

ABSTRACT

Asian cultivated rice (Oryza sativa) and African cultivated rice (Oryza glaberrima) originated from the wild rice species Oryza rufipogon and Oryza barthii, respectively. The genomes of both cultivated species have undergone profound changes during domestication. Whole-genome de novo assemblies of O. barthii, O. glaberrima, O. rufipogon and Oryza nivara, produced using PacBio single-molecule real-time (SMRT) and next-generation sequencing (NGS) technologies, showed that Gypsy-like retrotransposons are the major contributors to genome size variation in African and Asian rice. Through the detection of genome-wide structural variations (SVs), we observed that besides 28 shared SV hot spots, another 67 hot spots existed in either the Asian or African rice genomes. Based on gene annotation information of the SVs, we established that organelle-to-nucleus DNA transfers resulted in numerous SVs that participated in the nuclear genome divergence of rice species and subspecies. We detected 52 giant nuclear integrants of organelle DNA (NORGs, defined as >10 kb) in six Oryza AA genomes. In addition, we developed an effective method to genotype giant NORGs, based on genome assembly, and first showed the dynamic change in the distribution of giant NORGs in rice natural population. Interestingly, 16 highly differentiated giant NORGs tended to accumulate in natural populations of Asian rice from higher latitude regions, grown at lower temperatures and light intensities. Our study provides new insight into the genome divergence of African and Asian rice, and establishes that organelle-to-nucleus DNA transfers, as potentially powerful contributors to environmental adaptation during rice evolution, play a major role in producing SVs in rice genomes.


Subject(s)
Evolution, Molecular , Genome, Plant/genetics , Oryza/genetics , Cell Nucleus/metabolism , Genetic Variation/genetics , Oryza/metabolism
15.
Article in English | MEDLINE | ID: mdl-32509751

ABSTRACT

Histone deacetylases (HDACs) influence chromatin state and gene expression. Eighteen HDAC genes with important biological functions have been identified in rice. In this study, we surveyed the gene presence frequency of all 18 rice HDAC genes in 3,010 rice accessions. HDA710/OsHDAC2 showed insertion/deletion (InDel) polymorphisms in almost 98.8% japonica accessions but only 1% indica accessions. InDel polymorphism association analysis showed that accessions with partial deletions in HDA710 tended to display early leaf senescence. Further transgenic results confirmed that HDA710 delayed leaf senescence in rice. The over-expression of HDA710 delayed leaf senescence, and the knock-down of HDA710 accelerated leaf senescence. Transcriptome analysis showed that photosynthesis and chlorophyll biosynthesis related genes were up-regulated in HDA710 over-expression lines, while some programmed cell death and disease resistance related genes were down-regulated. Co-expression network analysis with gene expression view revealed that HDA710 was co-expressed with multiple genes, particularly OsGSTU12, which was significantly up-regulated in 35S::HDA710-sense lines. InDels in the promoter region of OsGSTU12 and in the gene region of HDA710 occurred coincidentally among more than 90% accessions, and we identified multiple W-box motifs at the InDel position of OsGSTU12. Over-expression of OsGSTU12 also delayed leaf senescence in rice. Taken together, our results suggest that both HDA710 and OsGSTU12 are involved in regulating the process of leaf senescence in rice.

16.
Nat Commun ; 11(1): 443, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974373

ABSTRACT

Callus browning, a common trait derived from the indica rice cultivar (Oryza sativa L.), is a challenge to transformation regeneration. Here, we report the map-based cloning of BROWNING OF CALLUS1 (BOC1) using a population derived from crossing Teqing, an elite indica subspecies exhibiting callus browning, and Yuanjiang, a common wild rice accession (Oryza rufipogon Griff.) that is less susceptible to callus browning. We show that BOC1 encodes a SIMILAR TO RADICAL-INDUCED CELL DEATH ONE (SRO) protein. Callus browning can be reduced by appropriate upregulation of BOC1, which consequently improves the genetic transformation efficiency. The presence of a Tourist-like miniature inverted-repeat transposable element (Tourist MITE) specific to wild rice in the promoter of BOC1 increases the expression of BOC1 in callus. BOC1 may decrease cell senescence and death caused by oxidative stress. Our study provides a gene target for improving tissue culturability and genetic transformation.


Subject(s)
Oryza/cytology , Oryza/genetics , Plant Proteins/genetics , Alleles , Cinnamates/pharmacology , Cloning, Molecular , Gene Expression Regulation, Plant , Hygromycin B/analogs & derivatives , Hygromycin B/pharmacology , Oryza/drug effects , Oryza/physiology , Oxidative Stress , Phenotype , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Sequence Analysis, RNA/methods , Tissue Culture Techniques , Transformation, Genetic
17.
Plant Biotechnol J ; 18(3): 756-769, 2020 03.
Article in English | MEDLINE | ID: mdl-31469486

ABSTRACT

Nonspecific lipid transfer proteins (nsLTPs) play critical roles in plant development and response to abiotic stresses. Here, we found that a rice lipid transfer protein, OsLTPL159, was associated with cold tolerance at the early seedling stage. Overexpression of an OsLTPL159IL112 allele from the cold-tolerant introgression line IL112 in either the japonica variety Zhonghua17 (ZH17) or the indica variety Teqing background dramatically enhanced cold tolerance. In addition, down-regulation of the expression of OsLTPL159 in the japonica variety ZH17 by RNA interference (RNAi) significantly decreased cold tolerance. Further transcriptomic, physiological and histological analysis showed that the OsLTPL159IL112 allele likely enhanced the cold tolerance of rice at the early seedling stage by decreasing the toxic effect of reactive oxygen species, enhancing cellulose deposition in the cell wall and promoting osmolyte accumulation, thereby maintaining the integrity of the chloroplasts. Notably, overexpression of another allele, OsLTPL159GC2 , from the recipient parent Guichao 2 (GC2), an indica variety, did not improve cold tolerance, indicating that the variations in the OsLTPL159 coding region of GC2 might disrupt its function for cold tolerance. Further sequence comparison found that all 22 japonica varieties surveyed had an OsLTPL159 haplotype identical to IL112 and were more cold-tolerant than the surveyed indica varieties, implying that the variations in OsLTPL159 might be associated with differential cold tolerance of japonica and indica rice. Therefore, our findings suggest that the OsLTPL159 allele of japonica rice could be used to improve cold tolerance of indica rice through a molecular breeding strategy.


Subject(s)
Carrier Proteins/physiology , Cold Temperature , Oryza/physiology , Plant Proteins/physiology , Stress, Physiological , Gene Expression Profiling , Seedlings/physiology
18.
Genome ; 62(9): 635-642, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31283885

ABSTRACT

Low temperature is a vital effector of rice at different growth stages. MicroRNAs (miRNAs) play important roles in responding to abiotic and biotic stresses. Here, we confirmed the cold tolerance of Dongxiang common wild rice and explored the miRNAs differentially expressed under cold stress using genome-wide small RNA sequencing. In total, 16 miRNAs, nine upregulated and seven downregulated by cold stress, were characterized in Dongxiang common wild rice, and their target genes were predicted. Additionally, an AgriGO analysis of the target genes revealed that they were enriched in several terms related to cold-stress tolerance, suggesting a complex response mechanism, involving miRNAs, to cold stress in Dongxiang common wild rice.


Subject(s)
MicroRNAs/metabolism , Oryza/genetics , RNA, Plant/metabolism , Acclimatization/genetics , Cold-Shock Response/genetics , Oryza/physiology , Sequence Analysis, RNA
19.
Mol Plant ; 12(8): 1075-1089, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31002981

ABSTRACT

The modification of plant architecture is a crucial target in rice domestication and modern genetic improvement. Although several genes regulating rice plant architecture have been characterized, the molecular mechanisms underlying rice plant architecture domestication remain largely unclear. Here we show that the inclined tiller growth in wild rice is controlled by a single dominant gene, TILLER INCLINED GROWTH 1 (TIG1), which is located on chromosome 8 and encodes a TCP transcriptional activator. TIG1 is primarily expressed in the adaxial side of the tiller base, promotes cell elongation, and enlarges the tiller angle in wild rice. Variations in the TIG1 promoter of indica cultivars (tig1 allele) resulted in decreased expression of TIG1 in the adaxial side of tiller base and reduced cell length and tiller angle, leading to the transition from inclined tiller growth in wild rice to erect tiller growth during rice domestication. TIG1 positively regulates the expression of EXPA3, EXPB5, and SAUR39 to promote cell elongation and increase the tiller angle. Selective sweep analysis revealed that the tig1 allele was selected in indica cultivars by human beings. The cloning and characterization of TIG1 supports a new scenario of plant architecture evolution in rice.


Subject(s)
Crops, Agricultural/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , Alleles , Crops, Agricultural/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Oryza/genetics , Plant Proteins/genetics , Transcription Factors/genetics
20.
Plant Physiol ; 180(1): 356-366, 2019 05.
Article in English | MEDLINE | ID: mdl-30770460

ABSTRACT

The emergence of sterile individuals in the hybrid backcross progeny of wild and cultivated rice limits the use of wild rice alleles for improving cultivated rice, but the molecular mechanisms underlying this sterility remain unclear. Here, we identified the semisterile introgression line YIL42, derived from a cross between the indica rice variety Teqing (Oryza sativa) and Oryza rufipogon accession YJCWR (Yuanjiang common wild rice), which exhibits semisterility. Using positional cloning, we isolated EMBRYO SAC ABORTION 1 (ESA1), which encodes a nuclear-membrane localized protein containing an armadillo repeat domain. A mutation in ESA1 at position 1819 (T1819C) converts a stop codon into an Arg (R) codon, causing delayed termination of protein translation. Analysis of transgenic lines indicated that the difference in ESA1 protein structure between O. rufipogon-derived ESA1 and Teqing-derived esa1 affects female gamete abortion during early mitosis. Fertility investigation and expression analysis indicated that the interaction between ESA1 T1819 and unknown gene(s) of Teqing affects spikelet fertility of the hybrid backcross progeny. The ESA1 T1819 allele is present in O. rufipogon but absent in O. sativa, suggesting that variation in ESA1 may be associated with interspecific hybrid incompatibility between wild and cultivated rice. Our findings provide insight into the molecular mechanism underlying female sterility, which is useful for improving the panicle seed setting rate of rice and for developing a strategy to overcome interspecific hybrid sterility between cultivated rice and wild rice.


Subject(s)
Oryza/genetics , Plant Infertility/genetics , Plant Proteins/genetics , Seeds/physiology , Chimera , Chromosome Mapping , Gene Expression Regulation, Plant , Mitosis , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Protein Domains , Repetitive Sequences, Amino Acid , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...