Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Angew Chem Int Ed Engl ; : e202405860, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837604

ABSTRACT

Numerous clinical disorders have been linked to the etiology of dysregulated NLRP3 (NACHT, LRR, and PYD domain-containing protein 3) inflammasome activation. Despite its potential as a pharmacological target, modulation of NLRP3 activity remains challenging. Only a sparse number of compounds have been reported that can modulate NLRP3 and none of them have been developed into a commercially available drug. In this research, we identified three potent NLRP3 inflammasome inhibitors, gymnoasins A-C (1-3), with unprecedented pentacyclic scaffolds, from an Antarctic fungus Pseudogymnoascus sp. HDN17-895, which represent the first naturally occurring naphthopyrone-macrolide hybrids. Additionally, biomimetic synthesis of gymnoasin A (1) was also achieved validating the chemical structure and affording ample amounts of material for exhaustive bioactivity assessments. Biological assays indicated that 1 could significantly inhibited in vitro NLRP3 inflammasome activation and in vivo pro-inflammatory cytokine IL-1ß release, representing a valuable new lead compound for the development of novel therapeutics with the potential to inhibit the NLRP3 inflammasome.

2.
Adv Sci (Weinh) ; : e2310018, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687842

ABSTRACT

Dimeric indole-containing diketopiperazines (di-DKPs) are a diverse group of natural products produced through cytochrome P450-catalyzed C-C or C-N coupling reactions. The regio- and stereoselectivity of these reactions plays a significant role in the structural diversity of di-DKPs. Despite their pivotal role, the mechanisms governing the selectivity in fungi are not fully understood. Employing bioinformatics analysis and heterologous expression experiments, five undescribed P450 enzymes (AmiP450, AcrP450, AtP450, AcP450, and AtuP450) responsible for the regio- and stereoselective dimerization of diketopiperazines (DKPs) in fungi are identified. The function of these P450s is consistent with phylogenetic analysis, highlighting their dominant role in controlling the dimerization modes. Combinatorial biosynthesis-based pathway reconstitution of non-native gene clusters expands the chemical space of fungal di-DKPs and reveals that the regioselectivity is influenced by the substrate. Furthermore, multiple sequence alignment and molecular docking of these enzymes demonstrate a C-terminal variable region near the substrate tunnel entrance in AtuP450 that is crucial for its regioselectivity. These findings not only reveal the secret of fungal di-DKPs diversity but also deepen understanding of the mechanisms and catalytic specificity involved in P450-catalyzed dimerization reactions.

3.
J Invertebr Pathol ; 204: 108113, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631559

ABSTRACT

Macins are a family of antimicrobial peptides, which play multiple roles in the elimination of invading pathogens. In the present study, a macin was cloned and characterized from Pacific abalone Haliotis discus hannai (Designated as HdMac). Analysis of the conserved domain suggested that HdMac was a new member of the macin family. In non-stimulated abalones, HdMac transcripts were constitutively expressed in all five tested tissues, especially in hemocytes. After Vibrio harveyi stimulation, the expression of HdMac mRNA in hemocytes was significantly up-regulated at 12 hr (P < 0.01). RNAi-mediated knockdown of HdMac transcripts affected the survival rates of abalone against V. harveyi. Moreover, recombinant protein of HdMac (rHdMac) exhibited high antibacterial activities against invading bacteria, especially for Vibrio anguillarum. In addition, rHdMac possessed binding activities towards glucan, lipopolysaccharides (LPS), and peptidoglycan (PGN), but not chitin in vitro. Membrane integrity analysis revealed that rHdMac could increase the membrane permeability of bacteria. Meanwhile, both the phagocytosis and chemotaxis ability of hemocytes could be significantly enhanced by rHdMac. Overall, the results showed that HdMac could function as a versatile molecule involved in immune responses of H. discus hannai.


Subject(s)
Gastropoda , Animals , Gastropoda/microbiology , Gastropoda/genetics , Gastropoda/immunology , Vibrio/physiology , Anti-Bacterial Agents/pharmacology , Hemocytes/metabolism , Amino Acid Sequence , Antimicrobial Cationic Peptides/metabolism , Antimicrobial Cationic Peptides/genetics
4.
Cancer Pathog Ther ; 2(1): 31-37, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38328709

ABSTRACT

Background: Human epidermal growth factor receptor 2 (HER2)-targeted agents have significantly improved the outcomes of patients with HER2-positive breast cancer; however, a large proportion of patients still develop resistance to trastuzumab. In this study, we investigated the efficacy and safety of inetetamab, another anti-HER2 antibody, combined with pyrotinib and oral vinorelbine in patients with HER2-positive advanced breast cancer so as to provide new ideas for the treatment. Methods: In this prospective, single-arm, phase 2 trial, patients with HER2-positive advanced breast cancer with disease progression after trastuzumab were recruited. Patients received a combination of inetetamab (loading dose of 8 mg/kg and subsequent doses of 6 mg/kg intravenously once every 3 weeks), pyrotinib (400 mg orally once daily), and vinorelbine (60 mg/m2 orally once weekly) until disease progression or intolerable toxicity. The primary endpoint was progression-free survival (PFS). The secondary endpoints included objective response rate (ORR), overall survival (OS), disease control rate (DCR), and safety. Results: Between February 13, 2022 and December 25, 2022, 30 patients were screened and enrolled in this study. The median age of the patients at enrollment was 54 years, 12 patients (40.0 %) had hormone-receptor-positive disease and 23 patients (76.7 %) had visceral metastasis. The median PFS was 8.63 months (95 % confidence interval [CI] 4.15-13.12 months). The median OS was not reached. The ORR was 53.3 % (16/30) and the DCR was 96.7 % (29/30). The most common Grade III/IV adverse events were leukopenia (n = 5, 16.7 %), neutropenia (n = 4, 13.3 %), and diarrhea (n = 3, 10 %). No treatment-related serious adverse events or deaths occurred. Conclusions: The combination regimen of inetetamab, pyrotinib, and oral vinorelbine showed encouraging efficacy and favorable safety in patients with HER2-positive advanced breast cancer and could be considered as an alternative treatment option for the patients. Trial registration: No.NCT05823623; https://www.clinicaltrials.gov/.

5.
Biosens Bioelectron ; 242: 115748, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37847984

ABSTRACT

Granzyme B (GrB) is a serine protease released by natural killer cells and cytotoxic T lymphocytes during immune responses, which not only plays a role in tumor diagnosis but also provides valuable guidance during tumor treatment. In this work, we have designed a charge-switching peptide to fabricate an electrochemical biosensor for quantitative analysis of GrB. Specifically, the designed zwitterionic peptide is in an electrically neutral state before activation, and a door lock structure (proline) is constructed by utilizing the selectivity of carboxypeptidase A (CPA) to the carboxy-terminus of the peptide chain. The door lock is opened when the target is present, allowing CPA to hydrolyze the peptide. At this time, the peptide will convert from neutral to positive, triggering the assembly of a positively charged peptide layer on the electrode surface, resulting in a signal change. Studies have shown that the biosensor has good analytical performance, with a detection range of 0.01 pM-8 pM and a detection limit as low as 3.5 fM. Moreover, the developed biosensor has been effectively applied to the analysis of clinical samples, demonstrating its ability to monitor tumor progression and treatment with clinical applications.


Subject(s)
Biosensing Techniques , Neoplasms , Humans , Biosensing Techniques/methods , Granzymes , Peptides/chemistry , Electrochemical Techniques/methods , Limit of Detection
6.
Article in English | MEDLINE | ID: mdl-37769245

ABSTRACT

PURPOSE: To describe a rare case of Epstein-Barr virus (EBV)-positive primary vitreoretinal lymphoma (PVRL) in an immunosuppressed patient. METHODS: Observational case report. RESULTS: A 64-year-old man under immunosuppressive therapy for rheumatic arthritis was referred for 2-month of blurred vision and decreased visual acuity in the right eye. Only mutton-fat keratic precipitates and mild vitreous opacity were found in the right eye without (sub-)retinal or sub-retinal pigment epithelial lesions. Vitreous biopsy and systemic workup suggested the diagnosis of PVRL of diffuse large B cell lymphoma (DLBCL) subform. Neoplastic cells stained positive for EBV antigens, EBV-encoded small RNA and Epstein-Barr nuclear antigen 2, consistent with EBV-positive DLBCL. Intravitreal methotrexate was effective in improving ocular symptoms. CONCLUSION: Our case provided evidence on the association of EBV infection with PVRL.

7.
Ecotoxicol Environ Saf ; 256: 114840, 2023 May.
Article in English | MEDLINE | ID: mdl-37001191

ABSTRACT

Harmful cyanobacterial blooms have caused numerous biosecurity incidents owing to the production of hazardous secondary metabolites such as microcystin. Additionally, cyanobacteria also release many other components that have not been explored. We identified compounds of a toxic mixture exudated from a dominant, blooming species, Microcystis aeruginosa, and found that phytosphingosine (PHS) was one of the bioactive components. Since PHS exhibited toxicity and is deemed a hazardous substance by the European Chemicals Agency, we hypothesized that PHS is a potentially toxic compound in M. aeruginosa exudates. However, the mechanisms of PHS ecotoxicity remain unclear. We assessed the cytotoxicity of PHS using an in vitro cell model in eight human cell lines and observed that the nasopharyngeal carcinoma cell line CNE2 was the most sensitive. We exposed CNE2 cells to 0-25 µmol/L PHS for 24 hr to explore its toxicity and mechanism. PHS exposure resulted in abnormal nuclear morphology, micronuclei, and DNA damage. Moreover, PHS significantly inhibited cell proliferation and arrested cell cycle at S phase. The results of Western blot suggested that PHS increased the expression of DNA damage-related proteins (ATM, p-P53 and P21) and decreased the expression of S phase-related proteins (CDK2, CyclinA2 and CyclinE1), indicating the toxicological mechanism of PHS on CNE2 cells. These data provide evidence that PHS has genetic toxicity and inhibits cell proliferation by damaging DNA. Our study provides evidence that PHS inhibits cell proliferation by damaging DNA. While additional work is required, we propose that PHS been considered as a potentially toxic component in MaE in addition to other well-characterized secondary compounds.


Subject(s)
Cyanobacteria , Microcystis , Humans , Microcystins/toxicity , Cell Proliferation , Cell Line
8.
J Hazard Mater ; 451: 131137, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36913748

ABSTRACT

Transfer of CeO2 engineered nanoparticles (NPs) through feces was investigated between two omnivorous organisms, red crucian carp (Carassius auratus red var.) and crayfish (Procambarus clarkii). Upon water exposure (5 mg/L, 7 days), the highest bioaccumulation was observed in carp gills (5.95 µg Ce/g D.W.) and crayfish hepatopancreas (648 µg Ce/g D.W.), with the bioconcentration factors (BCFs) at 0.45 and 3.61, respectively. In addition, 97.4% and 73.0% of ingested Ce were excreted by carp and crayfish, respectively. The feces of carp and crayfish were collected and fed to crayfish and carp, respectively. After feces exposure, bioconcentration was observed in both carp (BCF, 3.00) and crayfish (BCF, 4.56). After feeding crayfish with carp bodies (1.85 µg Ce/g D.W.), CeO2 NPs were not biomagnified (biomagnification factor, 0.28). Upon water exposure, CeO2 NPs were transformed into Ce(III) in the feces of both carp (24.6%) and crayfish (13.6%), and the transformation was stronger after subsequent feces exposure (100% and 73.7%, respectively). Feces exposure lowered histopathological damage, oxidative stress, and nutritional quality (e.g., crude proteins, microelements, amino acids) to carp and crayfish in comparison with water exposure. This research highlights the importance of feces exposure on the transfer and fate of NPs in aquatic ecosystems.


Subject(s)
Carps , Nanoparticles , Water Pollutants, Chemical , Animals , Ecosystem , Aquatic Organisms/metabolism , Carps/metabolism , Nanoparticles/toxicity , Water/pharmacology , Astacoidea , Water Pollutants, Chemical/metabolism , Fresh Water
9.
Cancers (Basel) ; 15(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36765853

ABSTRACT

Tamoxifen resistance remains a challenge in hormone receptor-positive (HR+) breast cancer. Recent evidence suggests that transfer ribonucleic acid (tRNA)-derived fragments play pivotal roles in the occurrence and development of various tumors. However, the relationship between tRNA-derived fragments and tamoxifen resistance remains unclear. In this study, we found that the expression of tRF-16-K8J7K1B was upregulated in tamoxifen-resistant cells in comparison with tamoxifen-sensitive cells. Higher levels of tRF-16-K8J7K1B were associated with shorter disease-free survival in HR+ breast cancer. Overexpression of tRF-16-K8J7K1B promotes tamoxifen resistance. Moreover, extracellular tRF-16-K8J7K1B could be packaged into exosomes and could disseminate tamoxifen resistance to recipient cells. Mechanistically, exosomal tRF-16-K8J7K1B downregulates the expression of apoptosis-related proteins, such as caspase 3 and poly (ADP-ribose) polymerase, by targeting tumor necrosis factor-related apoptosis-inducing ligand in receptor cells, thereby reducing drug-induced cell apoptosis. Therapeutically, the inhibition of exosomal tRF-16-K8J7K1B increases the sensitivity of breast cancer cells to tamoxifen in vivo. These data demonstrate that exosomal tRF-16-K8J7K1B may be a novel therapeutic target to overcome tamoxifen resistance in HR+ breast cancer.

10.
Fish Shellfish Immunol ; 133: 108554, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36669603

ABSTRACT

Lectins are a superfamily of carbohydrate-recognition proteins that bind to specific carbohydrate structures and play significant roles in immune recognition and clearance of invaders. In the study, we investigated the potential mechanisms of PAMP binding and opsonic activities of a c-type lectin and a sialic acid-binding lectin from manila clam Venerupis philippinarum (designed as VpCTL and VpSABL). Both recombinant proteins (rVpCTL and rVpSABL) could bind LPS, PGN, glucan and zymosan in vitro. Coinciding with the PAMPs binding assay, a broad agglutination spectrum was displayed by rVpSABL including gram-positive bacteria Staphyloccocus aureus, gram-negative bacteria Escherichia coli, Vibrio parahaemolyticus, Vibrio harveyi, Pseudomonas putida, Proteus mirabilis and fungi Pichia pastoris, while no agglutinative activities on P. mirabilis and P. putida was observed in rVpCTL. Moreover, the phagocytosis and encapsulation ability of hemocytes could be significantly enhanced by rVpCTL and rVpSABL. More remarkable, VpCTL and VpSABL were highly detected in all the examined tissues, especially in gills and hepatopancreas. All the results showed that VpCTL and VpSABL could function as pattern recognition receptors (PRRs) with distinct recognition spectrum, perhaps involved in the innate immune responses of V. philippinarum.


Subject(s)
Bivalvia , Lectins, C-Type , Animals , N-Acetylneuraminic Acid , Amino Acid Sequence , Phagocytosis , Immunity, Innate , Carbohydrates
11.
J Am Chem Soc ; 145(1): 413-421, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36542862

ABSTRACT

Genome mining of cryptic natural products (NPs) remains challenging, especially in filamentous fungi, owing to their complex genetic regulation. Increasing evidence indicates that several epigenetic modifications often act cooperatively to control fungal gene transcription, yet the ability to predictably manipulate multiple genes simultaneously is still largely limited. Here, we developed a multiplex base-editing (MBE) platform that significantly improves the capability and throughput of fungal genome manipulation, leading to the simultaneous inactivation of up to eight genes using a single transformation. We then employed MBE to inactivate three negative epigenetic regulators combinatorially in Aspergillus nidulans, enabling the activation of eight cryptic gene clusters compared to the wild-type strains. A group of novel NPs harboring unique cichorine and polyamine hybrid chemical scaffolds were identified, which were not reported previously. We envision that our scalable and efficient MBE platform can be readily applied in other filamentous fungi for the genome mining of novel NPs, providing a powerful approach for the exploitation of fungal chemical diversity.


Subject(s)
Aspergillus nidulans , Biological Products , Epigenesis, Genetic , Genes, Fungal , Genome, Fungal , Fungi/genetics , Aspergillus nidulans/genetics , Multigene Family
12.
Sci Total Environ ; 857(Pt 2): 159257, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36208737

ABSTRACT

Release of toxic cyanobacterial secondary metabolites threatens biosecurity, foodwebs and public health. Microcystis aeruginosa (Ma), the dominant species in global freshwater cyanobacterial blooms, produces exudates (MaE) that cause adverse outcomes including nerve damage. Previously, we identified > 300 chemicals in MaE. It is critical to investigate neurotoxicity mechanisms of active substances among this suite of Ma compounds. Here, we screened 103 neurotoxicity assays from the ToxCast database to reveal targets of action of MaE using machine learning. We then built a potential Adverse Outcome Pathway (AOP) to identify neurotoxicity mechanisms of MaE as well as key targets. Finally, we selected potential neurotoxins matched with those targets using molecular docking. We found 38 targets that were inhibited and eight targets that were activated, collectively mainly related to neurotransmission (i.e. cholinergic, dopaminergic and serotonergic neurotransmitter systems). The potential AOP of MaE neurotoxicity could be caused by blocking calcium voltage-gated channel (CACNA1A), because of antagonizing neurotransmitter receptors, or because of inhibiting solute carrier transporters. We identified nine neurotoxic MaE compounds with high affinity to those targets, including LysoPC(16:0), 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine, egonol glucoside, polyoxyethylene (600) monoricinoleate, and phytosphingosine. Our study enhances understanding of neurotoxicity mechanisms and identifies neurotoxins in cyanobacterial bloom exudates, which may help identify priority compounds for cyanobacteria management.


Subject(s)
Cyanobacteria , Microcystis , Neurotoxins/toxicity , Neurotoxins/metabolism , Molecular Docking Simulation , Cyanobacteria/chemistry , Microcystis/metabolism , Exudates and Transudates
13.
Toxicology ; 482: 153370, 2022 12.
Article in English | MEDLINE | ID: mdl-36334778

ABSTRACT

Cyanobacterial blooms, usually dominated by Microcystis aeruginosa, pose a serious threat to global freshwater ecosystems owing to their production and release of various harmful secondary metabolites. Detection of the chemicals in M. aeruginosa exudates using metabolomics technology revealed that phytosphingosine (PHS) was one of the most abundant compounds. However, its specific toxicological mechanism remained unclear. CNE-2 cells were selected to illustrate the cytotoxic mechanism of PHS, and it was determined to cause excessive production of reactive oxygen species and subsequently damage the mitochondrial structure. Mitochondrial membrane rupture led to matrix mitochondrial membrane potential disintegration, which induced Ca2+ overload and interrupted ATP synthesis. Furthermore, rupture of the mitochondrial membrane induced the opening of the permeability transition pore, which caused the release of proapoptotic factors into the cytoplasm and the expression of apoptosis-related proteins Bax, Bcl-2, cytochrome-c and cleaved caspase-3 in CNE-2 cells. These events, in turn, activated the mitochondrially mediated intrinsic apoptotic pathway. A mitochondrial repair mechanism, namely, PINK1/Parkin-mediated mitophagy, was then blocked, which further promoted apoptosis. Our findings suggest that more attention should be paid to the ecotoxicity of PHS, which is already listed as a contaminant of emerging concern.


Subject(s)
Ecosystem , Sphingosine , Apoptosis , Cytochromes c
14.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36450378

ABSTRACT

The mechanism(s) of immune checkpoint inhibitor (ICI)-induced myasthenia gravis (MG), an immune-related adverse event (irAE) that is fatal and limits subsequent ICI use, remain unexplored. Here, through comparative genomic analysis, we identified a pathogenic p.S467C germline variant in SLC22A5 in a thymoma case with ICI-induced MG, which was found to be associated with fatty acid oxidation through its regulation on L-carnitine levels. Remarkably, ICI rechallenge with L-carnitine pretreatment led to durable response without MG-related symptoms. Thus, we provide the first clinical evidence of genetic test-directed irAE management, which integrates individualized ICI treatment into the evolving paradigm of cancer management.


Subject(s)
Myasthenia Gravis , Thymoma , Thymus Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Myasthenia Gravis/chemically induced , Thymoma/drug therapy , Carnitine , Solute Carrier Family 22 Member 5
15.
Front Oncol ; 12: 985734, 2022.
Article in English | MEDLINE | ID: mdl-36313724

ABSTRACT

Background: With increased survival in breast cancer, resulting from advances in treatment, patients incur the possibility of subsequent primary malignancies, especially lung cancer. The aim of this study was to assess the frequency of CT-detected pulmonary ground-glass nodules and lung cancer following breast cancer diagnosis, the associations between breast cancer and lung cancer, the pathological features of double primary cancer, and the status of epidermal growth factor receptor (EGFR) mutations in second primary lung cancer. Methods: Clinical data from more than 9000 individuals who were diagnosed with primary breast cancer at Jiangsu Province Hospital (Jiangsu, China) between January 2008 and December 2021 were retrospectively analyzed. Results: Of the 9179 patients, 6512 underwent diagnostic CT, 55 (0.8%) were diagnosed with a second primary lung cancer, which accounted for approximately 18.4% of the pulmonary ground-glass nodules (GGNs) detected. The incidence was higher than in the general female population (standardized incidence ratio 1.4 [95% confidence interval (CI): 1.25-1.55]). Patients who experienced a second primary lung cancer exhibited a significantly higher rate of EGFR mutation (78.5%) than those with lung adenocarcinoma alone, with most exhibiting low-grade malignancy, older age, estrogen receptor negativity, low Ki67, and no lymph node metastasis. Conclusions: Breast cancer patients, especially those with low-grade malignancy, were at high risk for developing primary lung cancer. For isolated GGN in patients with high-risk factors, clinicians should insist on close follow-up. Furthermore, EGFR may play an important role in primary lung adenocarcinomas and breast cancer.

16.
Cancers (Basel) ; 14(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36077621

ABSTRACT

Treatment options for human epidermal growth factor receptor (HER2)-negative breast cancer patients are limited in comparison to the HER2-positive patients, particularly for metastatic breast cancer patients. Apatinib is a small-molecule tyrosine kinase inhibitor that targets the vascular endothelial growth factor receptor 2 (VEGFR-2). Here, we reported the apatinib-based therapy data in HER2-negative metastatic breast cancer. Apatinib was taken at a dose of 250 mg orally once per day and combined with standard chemotherapy regimens. The PFS and OS of 128 patients were 4.7 months and 15.3 months, respectively. The objective response rate (ORR) and the disease control rate (DCR) were 22.7% and 80.5%, respectively. Patients with breast cancer susceptibility gene (BRCA) mutations were found to have a longer PFS and OS. Moreover, combination immunotherapy or paclitaxel-platinum regimens shared an improved response to other regimens. Most of the adverse effects (hypertension, anaemia, and hand-foot syndrome) were grade 1 to 2. Metastatic breast cancer patients could benefit from apatinib therapy at a low dosage, and the adverse effects are mild in real-world clinical practice. Furthermore, BRCA may be a putative biomarker for apatinib in HER2-negative breast cancer. Immunotherapy or paclitaxel-platinum regimens may be recommended to combine with apatinib therapy.

17.
Front Oncol ; 12: 859157, 2022.
Article in English | MEDLINE | ID: mdl-35574394

ABSTRACT

Background: Hemangioblastoma (HB) is a rare and highly vascularized tumor that originates from the central nervous system as well as other part of the body. They can appear sporadically or as part of von Hippel-Lindau (VHL) disease, a rare hereditary cancer syndrome. Although surgery can cure the majority of HBs, the disease shows a treatment-refractory challenge upon recurrence. HBs express a high amount of vascular endothelial growth factor (VEGF) which is responsible for angiogenesis and subsequently tumor progression. Anti-angiogenic treatment like bevacizumab has showed effect on HB, so we hypothesized that anlotinib could trigger HB regression via its inhibitory effect on VEGF. Case Presentation: We will share our experience in treating a 62-year-old woman with multiple recurrent lumbar and sacral cord HBs. She was treated with anlotinib (8mg qd d1-14, q3w) for three months and her follow up radiological examination demonstrated marked tumor regression which was evaluated as having partial response pursuant to RECIST 1.1 system. She is currently still receiving treatment of anlotinib orally and the lesions continuously reduced. Conclusion: We have reported that anlotinib can cause significant radiographic response in a patient with multiple recurrent lumbar and sacral cord HBs for the first time. This might enable a novel therapeutic approach for patients with multiple recurrent HB or those with multiple lesions such as in VHL disease which are difficult to resect surgically.

18.
Org Lett ; 24(22): 3993-3997, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35616425

ABSTRACT

The Wnt/ß-catenin signaling pathway is an evolutionarily conserved signaling cascade involved in a broad range of biological roles. Dysregulation of the Wnt/ß-catenin pathway is implicated in congenital malformations and various kinds of cancers. We discovered a novel Wnt/ß-catenin inhibitor, talaverrucin A (1), featuring an unprecedented 6/6/6/5/5/5/6 fused ring system, from an Antarctica sponge-derived fungus Talaromyces sp. HDN151403. Talaverrucin A exhibits inhibitory activity on the Wnt/ß-catenin pathway in both zebrafish embryos in vivo and cultured mammalian cells in vitro, providing a naturally inspired small molecule therapeutic lead to target the Wnt/ß-catenin pathway.


Subject(s)
Talaromyces , Wnt Signaling Pathway , Animals , Antarctic Regions , Mammals/metabolism , Talaromyces/metabolism , Zebrafish , beta Catenin/metabolism
19.
Cell Death Discov ; 8(1): 196, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413945

ABSTRACT

As a key regulator of the DNA translesion synthesis (TLS) pathway, RAD18 is error-prone and contributes to the accumulation of DNA mutations. Our previous study showed that it plays an essential role in the progression of multiple tumors. However, the mechanism through which RAD18 influences triple-negative breast cancer (TNBC), especially the interaction between tumor cells and the tumor microenvironment, remains elusive. In this study, we showed that RAD18 expression is markedly higher in patients with high T stage TNBC and inversely correlated with prognosis. High expression of RAD18 facilitated a highly stem-cell phenotype through the Hippo/YAP pathway, which supports the proliferation of TNBC. In addition, the cytokine byproduct TGF-ß activates macrophages to have an M2-like tumor-associated macrophage (TAM) phenotype. Reciprocally, TGF-ß from TAMs activated RAD18 in TNBC to enhance tumor stemness, forming a positive feedback loop. Inhibition of YAP or TGF-ß breaks this loop and suppresses cancer stemness and proliferation In nude mice, RAD18 promoted subcutaneous transplanted tumor growth and M2-type TAM recruitment. Collectively, the RAD18-YAP-TGF-ß loop is essential for the promotion of the stemness phenotype by TNBC and could be a potential therapeutic target for TNBC.

20.
J Nat Prod ; 85(4): 987-996, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35380848

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive neoplastic diseases of the pancreas with fatal proliferation and metastasis and no medicine available for treatment. From an Antarctica sponge-derived fungus, Aspergillus insulicola HDN151418, four new nitrobenzoyl sesquiterpenoids, namely, insulicolides D-G (1-4), were isolated. Compounds 3 and 4 exhibited selective inhibition against human PDAC cell lines. Further studies indicated that compound 4 could significantly suppress cell proliferation to induce apoptosis and blocked migration and invasion of PDAC cells. Compound 4 could also avoid resistance and improved the therapeutic effect of the chemotherapy drug gemcitabine. A preliminary mechanism study showed that compound 4 can significantly inhibit the expression of EGFR and XIAP in PDAC cells. Altogether, 4 is a potential lead compound for anti-PDAC drug research.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Sesquiterpenes , Antarctic Regions , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Aspergillus , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Sesquiterpenes/pharmacology , Sesquiterpenes/therapeutic use , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...