Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Surg Res ; 17(1): 168, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303885

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) have emerged as the attractive candidates for cell therapy for cartilage repair in clinical therapy of osteoarthritis (OA). MiR-539-3p was reported to differentially express during chondrogenic differentiation of adipose stem cells (ASCs) by miRNA microarrays. The aim of the study was to investigate the effects and underlying mechanisms of miR-539-3p on chondrogenic differentiation of ASCs. METHODS: Human ASCs (hASCs) were obtained from liposuction and transfected with miR-539-3p mimic or inhibitor. Then, the cells were cultured in chondrogenic differentiation medium including transforming growth factor-ß1 (TGF-ß1). RESULTS: Our results found that miR-539-3p was gradually down-regulated during chondrogenic differentiation of hASCs. MiR-539-3p overexpression inhibited TGF-ß1-induced chondrogenic differentiation of hASCs, as supported by reducing the gene and protein expression of chondrogenic differentiation markers type II collagen alpha 1 (COL2A1), aggrecan (ACAN), and type II collagen. In contrast, miR-539-3p inhibitor significantly promoted the chondrogenic differentiation of hASCs. Dual luciferase reporter assay demonstrated that Sox9 was a direct target gene of miR-539-3p. The expression of SRY-box transcription factor 9 (Sox9) was up-regulated progressively over time during chondrogenic differentiation of hASCs. Additionally, Sox9 overexpression notably reversed chondrogenic differentiation of hASCs inhibited by miR-539-3p mimic, as demonstrated by the decreased expression of COL2A1, ACAN, and type II collagen. CONCLUSIONS: Altogether, miR-539-3p inhibited chondrogenic differentiation of hASCs by targeting Sox9. MiR-539-3p may have significant clinical applications for use as a targeted therapy of OA.


Subject(s)
Chondrogenesis/genetics , MicroRNAs/genetics , Osteoarthritis , SOX9 Transcription Factor/metabolism , Stem Cells , Adult , Aggrecans/genetics , Chondrogenesis/drug effects , Collagen Type II/genetics , Down-Regulation , Female , Healthy Volunteers , Humans , MicroRNAs/metabolism , SOX9 Transcription Factor/genetics , Stem Cells/metabolism , Transforming Growth Factor beta1/pharmacology
2.
Chin Med J (Engl) ; 133(11): 1304-1311, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32452893

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), such as erlotinib and gefitinib, are widely used to treat non-small cell lung cancer (NSCLC). However, acquired resistance is unavoidable, impairing the anti-tumor effects of EGFR-TKIs. It is reported that histone deacetylase (HDAC) inhibitors could enhance the anti-tumor effects of other antineoplastic agents and radiotherapy. However, whether the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) can overcome erlotinib-acquired resistance is not fully clear. METHODS: An erlotinib-resistant PC-9/ER cell line was established through cell maintenance in a series of erlotinib-containing cultures. NSCLC cells were co-cultured with SAHA, erlotinib, or their combination, and then the viability of cells was measured by the 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and apoptosis was determined by flow cytometry and western blotting. Finally, the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) was assessed by western blotting. RESULTS: The half-maximal inhibitory concentration of parental PC-9 cells was significantly lower than the established erlotinib-acquired resistant PC-9/ER cell line. PC-9/ER cells demonstrated reduced expression of PTEN compared with PC-9 and H1975 cells, and the combination of SAHA and erlotinib significantly inhibited cell growth and increased apoptosis in both PC-9/ER and H1975 cells. Furthermore, treating PC-9/ER cells with SAHA or SAHA combined with erlotinib significantly upregulated the expression of PTEN mRNA and protein compared with erlotinib treatment alone. CONCLUSIONS: PTEN deletion is closely related to acquired resistance to EGFR-TKIs, and treatment with the combination of SAHA and erlotinib showed a greater inhibitory effect on NSCLC cells than single-drug therapy. SAHA enhances the suppressive effects of erlotinib in lung cancer cells, increasing cellular apoptosis and PTEN expression. SAHA can be a potential adjuvant to erlotinib treatment, and thus, can improve the efficacy of NSCLC therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Apoptosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Proliferation , Chromosomes, Human, Pair 10 , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Erlotinib Hydrochloride/pharmacology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Tensins , Vorinostat/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...