Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Physiol Biochem ; 44(4): 1159-1174, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29730709

ABSTRACT

This study aimed to investigate the effects of lysine supplement on the growth performance of blunt snout bream Megalobrama amblycephala fed diets with fish meal (FM) replaced by rice protein concentrate (RPC) with the potential mechanisms characterized. Fish were fed three diets, including the FM diet (containing FM), the RPC diet (FM replaced by RPC), and the MRPC diet (the RPC diet supplemented with lysine) for 8 weeks. Weight gain, protein efficiency ratio, and nitrogen and energy utilization of fish fed the FM diet were all significantly higher than those of the RPC treatment, but they showed no statistical difference with those of the MRPC group. Fish fed the RPC diet showed shorter villi length of the distal intestine than that of the other treatments. No significance was found in whole-body composition and intestinal and hepatic cell proliferation among all the treatments. However, fish fed the RPC diet obtained relatively low transcriptions of growth hormone (GH), GH receptor, insulin-like growth factor-I (IGF-I), target of rapamycin (TOR), ribosomal protein S6 kinase 1, myoblast determination protein, myogenic factor 5, and myostatin a (MSTNa) but high levels of eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2) than those of the other groups. Furthermore, little difference was found in the transcriptions of 4E-BP2, myogenin, muscle-specific regulatory 4, and MSTNb in muscle. Overall, these results showed that dietary supplement of lysine benefits the growth performance of blunt snout bream fed FM-free diets through the mediation of the GH-IGF-I axis, TOR signaling pathway, myogenic regulatory factors, and MSTN.


Subject(s)
Animal Feed/analysis , Cyprinidae/growth & development , Diet/veterinary , Lysine/administration & dosage , Oryza/chemistry , Plant Proteins, Dietary/administration & dosage , Animals , Cyprinidae/metabolism , Dietary Supplements , Fish Proteins/metabolism , Muscle Development/drug effects , Protein Biosynthesis
2.
Fish Shellfish Immunol ; 67: 312-321, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28606860

ABSTRACT

A 10-week feeding trial was carried out to investigate the effects of dietary fish meal replacement by yeast hydrolysate (YH) on growth performance, complement system and stress resistance of juvenile Jian carp (Cyprinus carpio var. Jian) (initial average weight 19.44 ± 0.06 g). In the study, there were five groups: one control group was fed with a basal diet (YH0), and four treatment groups were fed with dietary fish meal replaced by 1% YH (YH1), 3% (YH3), 5% (YH5) and 7% (YH7), respectively. Each group had four replicates. At the end of feeding trial, twelve fish from each group (three fish per replicate) were randomly selected for assessing the growth and immunity. Meanwhile, 20 fish per replicate were injected by Aeromonas hydrophila. The results showed that (1) Replacement levels of YH significantly affected the growth of the fish with the highest values of weight gain (WG) occurred in fish fed YH3 diet. However, no significant difference in feed conversion ratios (FCR) was observed among all groups. (2) Pre-stressed plasma lysozyme activity, total protein and albumin contents and complement component 3 (C3) and complement component 4 (C4) levels of fish fed YH3 diet were significantly higher than those of fish fed YH0 diet. However, post-stressed immune parameters of fish in all groups were significantly lower. (3) There was a trend that the expression levels of the complement-related genes (c1r/s-A, c4-1, c3-H1, c5-1, fb/c2-A, mbl-2 and masp) initially increased and then decreased except mbl-2 and masp, with the maximum values observed in fish fed YH3 diet. Before stress, the expression levels of the inflammation-related genes (alp, il-1ß and tnf-α) in the hepatopancreas and spleen of fish fed YH1 diet and YH7 diet were significant higher than that of fish fed YH0 diet. After stress, no significant difference in the expression levels of those genes was observed among all groups. These results indicated that FM replacement by YH could improve growth performance, enhance innate immunity, and activate complement via the alternative complement pathway (ACP) and the classical complement pathway (CCP).


Subject(s)
Carps/immunology , Dietary Supplements , Immunity, Innate , Saccharomyces cerevisiae , Stress, Physiological/immunology , Animal Feed/analysis , Animals , Carps/genetics , Complement C3/metabolism , Complement C4/metabolism , Diet/veterinary , Fish Proteins/metabolism , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...