Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 130619, 2024 May.
Article in English | MEDLINE | ID: mdl-38460629

ABSTRACT

Lignin, a natural polyphenol polymer, is a biocompatible, cost-effective and accessible material. To fully utilize the benefits of lignin, it is crucial to transform its complex macromolecules into nanoscale particles in a single solvent. In this research, an assembly-mediated internal cross-linking method in single solvent was proposed to manufacture cross-linked lignin colloidal particles with nanoscale particle size controlled to be around 50 nm. Then, cross-linked lignin composite particles with a unique "patchy" structure for dental cleansing were obtained by rapidly grafting the cross-linked lignin colloidal particles onto the surface of silica microspheres through the bridging effect of silane coupling agent. The resulting composite particles have rivets with adjustable hardness, significantly lower than traditional abrasives like silica in both hardness and modulus. Through the group cleansing behavior of soft interlocking, a breakthrough has been achieved in the high solid content agglomeration friction mode of traditional abrasives, which effectively reduces tooth wear and exhibits an excellent plaque removal effect.


Subject(s)
Lignin , Lignin/chemistry , Particle Size , Silicon Dioxide/chemistry , Cross-Linking Reagents/chemistry , Hardness , Microspheres , Humans , Colloids/chemistry , Nanoparticles/chemistry
2.
Langmuir ; 40(1): 554-560, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38111205

ABSTRACT

Nanoscale composite lignin colloids were prepared on a large scale with a process of assembly-mediated internal cross-linking in a good solvent, thus possessing absolutely nanoscale dimensions, excellent robustness, and less aggregation. The therefore prime UV resistance and various natural visible colors contribute to the preservation and beautification of skin.

3.
Macromol Rapid Commun ; 44(20): e2300280, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37335979

ABSTRACT

Janus composite particles (JPs) with distinct compartmentalization of varied components thus performances and anisotropic shape display a variety of properties and have demonstrated great potentials in diversify practical applications. Especially, the catalytic JPs are advantageous for multi-phase catalysis with much easier separation of products and recycling the catalysts. In the first section of this review, typical methods to synthesize the JPs with varied morphologies are briefly surveyed in the category of polymeric, inorganic and polymer/inorganic composite. In the main section, recent progresses of the JPs in emulsion interfacial catalysis are summarized covering organic synthesis, hydrogenation, dye degradation, and environmental chemistry. The review will end by calling more efforts toward precision synthesis of catalytic JPs at large scale to meet the stringent requirements in practical applications such as catalytic diagnosis and therapy by the functional JPs.


Subject(s)
Emulsions , Emulsions/chemistry , Catalysis , Hydrogenation
4.
Soft Matter ; 19(9): 1705-1708, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36786895

ABSTRACT

We have proposed an approach to achieve nanofibers or composite nanofibers with functional nanoparticles via the protrusion of the budding interfacial membrane in an oil-water emulsion droplet stabilized with copolymers. The nanofibers were formed by the wrapping of the monolayer of the copolymers. The length is tunable with the copolymer concentration and water/oil ratio of the emulsion.

5.
J Am Chem Soc ; 145(4): 2404-2413, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36656650

ABSTRACT

Constructing precisely oriented assemblies and exploring their orientation-dependent properties remain a challenge for Janus nanoparticles (JNPs) due to their asymmetric characteristics. Herein, we propose a bubble-driven instant quasi-1D interfacial strategy for the oriented assembly of JNP chains in a highly controllable manner. It is found that the rapid formation of templated bubbles can promote the interfacial orientation of JNPs kinetically, while the confined quasi-1D interface in the curved liquid bridge can constrain the disordered rotation of the particles, yielding well-oriented JNP chains in a long range. During the evaporation process, the interfacial orientation of the JNPs can be transferred to the assembled chains. By regulating the amphiphilicity of the JNPs, both heteraxial and coaxial JNP assemblies are obtained, which show different polarization dependences on light scattering, and the related colorimetric logic behaviors are demonstrated. This work demonstrates the great potential of patterned interfacial assembly with a manageable orientation and shows the broad prospect of asymmetric JNP assembly in constructing novel optoelectronic devices.

6.
Angew Chem Int Ed Engl ; 61(27): e202205183, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35470952

ABSTRACT

We report the large-scale synthesis of photoluminescent single-chain nanoparticles (SCNPs) by electrostatic-mediated intramolecular crosslinking in a concentrated solution of 40 mg mL-1 by continuous addition of the free radical initiator. Poly(vinyl benzyl chloride) was charged by quaternization with vinyl-imidazolium for the intramolecular crosslinking by using 2,2-dimethoxy-2-phenylacetophenone (DMAP) as the radical initiator. Under the electrostatic repulsion thus interchain isolation, the intrachain crosslinking experiences the transition from coil through pearl-necklace to globular state. The SCNPs demonstrate strong photoluminescence in the visible range when the non-emissive units are confined thereby. Composition and microstructure of the SCNPs are tunable. The photoluminescent tadpole-like Janus SCNP can be used to selectively illuminate interfacial membranes while stabilizing the emulsions.

7.
Int J Biol Macromol ; 201: 59-66, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34973269

ABSTRACT

This study proposed a sustainable method to prepare cellulose I nanocrystals (CNCs I) from microcrystalline cellulose (MCC) in a mildly acidic lithium bromide trihydrate (MALBTH) system, a concentrated (50 wt%) solution of LiBr in water with recyclable formic acid (FA). First, the MCC was treated in the MALBTH system to generate CNCs with a uniform size, yield higher than 68.49% and crystallinity of 84.02%. Then, the CNCs could application for stabilizing Pickering emulsions for at least 15 days. Furthermore, FA was easily recycled from the MALBTH system, and the yield of the CNCs produced from the hydrolysis of MCC by using the recycled FA was still higher than 60%. Finally, this study provided a sustainable and green production of CNCs. A low-cost and environmentally friendly pathway to recover FA from the MALLBTH system at a high yield was still realized.


Subject(s)
Cellulose , Nanoparticles , Bromides , Cellulose/chemistry , Emulsions/chemistry , Lithium Compounds , Nanoparticles/chemistry
8.
Front Chem ; 10: 1107643, 2022.
Article in English | MEDLINE | ID: mdl-36618859

ABSTRACT

Lignin, the most abundant source of renewable aromatic compounds on the planet, is attracting more scholarly attention due to its possibility of replacing petroleum-based chemicals and products. However, it remains underutilized because of the heterogeneity of its multi-level structure that prevents homogenization and standardization of derived products. The key to solving these problems lies in finding a general preparation method to achieve the integrated utilization of lignin molecules at all levels. The assembly-mediated granulation methods provide a significant means for the integrated value-added utilization of lignin, and for biomass productization applications, it is significant to understand the molecular mechanisms of lignin nano-colloids (LNCs) formation thus accurately guiding their functionalization. Therefore, a thorough understanding of the assembly morphology and behavior of lignin in different solutions towards colloids is of great scientific importance. In this minireview, we focus on the assembly behavior of lignin in different solvents, specifically in mono-solvent and multi-solvent, and in particular, we review various methods for preparing lignin composite colloids and concentrate on the applications in therapy, cosmetics and emulsification, which are important for guiding the preparation and efficient utilization of LNCs.

9.
Soft Matter ; 17(7): 1796-1801, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33399612

ABSTRACT

Core/shell PVSt-b-PS@Fe3O4 composite nanoparticles (NPs) are achieved by grafting living cationic block copolymer chains onto the surface of amine-capped Fe3O4 NPs via fast termination. The number of chains grafted can be tuned via the molecular weight of PVSt-b-PS. Upon grafting PEG onto the PVSt block via a click reaction, the resulting (PVSt-g-PEG)-b-PS@Fe3O4 composite NPs become highly dispersible in water. A composite nanoparticle with ten chains is selected as a homogeneous NP to demonstrate the dynamic stepwise organization of the NP as oil is fed into the aqueous dispersion. The individual NPs with captured oil are further aggregated, but remain stable with increasing oil content. Eventually, a Pickering emulsion forms in which the aggregates are anchored at the emulsion interface. This dynamic behavior study helps to provide an understanding of the mechanism by which NPs stabilize Pickering emulsions.

10.
Chem Commun (Camb) ; 56(72): 10497-10500, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32776053

ABSTRACT

A robust thermo-responsive polymeric Janus cage with a PNIPAM-cPVBC-PEO sandwiched shell is synthesized. The Janus cage provides a general method of thermally triggered separation of oil/water emulsions independent of the type of surfactant and emulsion. It can selectively capture organic compounds at a higher temperature and release them at a lower temperature.

11.
Langmuir ; 35(35): 11435-11442, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31403803

ABSTRACT

The Fe3O4@SiO2 paramagnetic Janus particles with phenyl groups and amino groups segmented on two different sides were fabricated by the Pickering emulsion method. Then, the poly(ionic liquid)s were selectively modified onto the amino side via in situ induced ATRP polymerization. Different anions were introduced onto the poly(ionic liquid)s region by exchanging anions to adjust the wettability of the side. Meanwhile, after the PW12O403- anions were employed, the poly(ionic liquid)-modified Fe3O4@SiO2 Janus particles can be used as a catalytic solid emulsifier and degraded water-soluble dyes with the aid of stabilizing emulsion.

12.
Chem Commun (Camb) ; 55(32): 4667-4670, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30933200

ABSTRACT

Bi-continuous emulsion stabilized with amphiphilic Janus particles was achieved. Phase inversion of the as-formed emulsion was driven by increasing water content. The orientated Janus particle monolayer at the bi-continuous emulsion interface is interconnected by interfacial polymerization to form robust materials with amphiphilic channels.

13.
Langmuir ; 35(18): 6032-6038, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30983356

ABSTRACT

We report a method to prepare polymer/inorganic Janus particles by transferring self-assembled membranes of copolymers such as PS- b-PAA at an emulsion interface when the amine-capped particles such as paramagnetic Fe3O4@SiO2 core/shell particles are preferentially adsorbed by specific interactions. While the particles are protected, the exposed side can be further modified to conjugate aldehyde-capped polyethylene oxide (PEO). Both connections become robust by covalent bonds. The hydrophilic PEO and hydrophobic PS chains are distinctly compartmentalized onto the opposite sides of the Fe3O4@SiO2 particles. As a magnetic responsive solid surfactant, the stabilized emulsions can be driven with a magnet for directional movement and coalescence with increasing magnetic strength. This method can be extended to other Janus particles with tunable organic materials and solid particles.

14.
ACS Appl Mater Interfaces ; 11(10): 10153-10162, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30821141

ABSTRACT

Ultrathin two-dimensional NiS/Ni(OH)2 nanosheets (NiS/Ni(OH)2 NSs) were successfully filled within the hollow interiors of ammonium polyacrylate-functionalized polypyrrole nanotubes (NH4PA/PPyNTs) by a simple solvothermal method. This kind of novel hierarchical nanostructures with typical structural features of a nanoconfined system, denoted by NiS/Ni(OH)2/NH4PA/PPyNTs, were prepared by two main sections: polyacrylic acid (PAA) was first polymerized on PPyNTs containing vinyl groups, and the obtained PAA/PPyNTs exhibited a typical Janus structure, whose external surface was covered with carboxyl groups and the internal surface was still covered with PPy chains; second, Ni2+ ions as a precursor were facilely combined with -NH- segments in PPy chains by the coordination interaction under the solvothermal environment; therefore, NiS/Ni(OH)2 NSs (<1 nm) were well distributed on the internal surface of NH4PA/PPyNTs by the in situ growth. Because of the synergistic effects of ionizable NH4PA, PPy with good conductivity, NiS and Ni(OH)2 with electrocatalytical activity, as well as the nanoconfinement effect, the obtained NiS/Ni(OH)2@NH4PA/PPyNTs exhibited excellent electrocatalytic performance for detecting glucose. Sufficiently thin shells composed of ionizable NH4PA and good conductive PPyNTs can not only promote the electronic transmission effectively during the electrochemical detection of glucose but also hardly limit the transport of glucose and products. In addition, ultrathin NiS/Ni(OH)2 NSs may further enhance the electrocatalytic performance for glucose because of the more exposed active sites with the large surface area. Therefore, NiS/Ni(OH)2@NH4PA/PPyNTs can be applied as a good electrode material with stability and sensitivity for building a nonenzymatic glucose sensor.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Glucose/isolation & purification , Nanotubes/chemistry , Acrylic Resins/chemistry , Ammonium Compounds/chemistry , Glucose/chemistry , Humans , Nanocomposites/chemistry , Nickel/chemistry , Polymers/chemistry , Pyrroles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...