Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Hazard Mater ; 388: 121768, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31843409

ABSTRACT

This study combined electro-oxidation (EO) and electrocoagulation (EC) process (EO/EC) to treat landfill leachate by using RuO2-IrO2/Ti plate and microscale zero-valent iron powder composite anode. EO was achieved by direct oxidation and indirect oxidation on RuO2-IrO2/Ti plate, whereas EC was achieved using iron powder to lose electrons and produce coagulants in situ. The influences of variables including type of anode material, applied voltage, zero-valent iron dosage, interelectrode gap, and reaction temperature on EO/EC were evaluated. Results showed that at an applied voltage of 10 V, zero-valent iron dosage of 0.2 g, interelectrode gap of 1 cm, and non-temperature-controlled mode, the removal efficiencies were 72.5 % for total organic carbon (TOC), 98.5 % for ammonia, and 98.6 % for total phosphorus (TP). Some heavy metals and hardness were also removed. Further analysis indicated that the removal of TOC, ammonia, and TP followed pseudo-first order, pseudo-zero order, and pseudo-second order kinetic models, respectively. Other characteristics were examined by scanning electron microscopy-energy dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Overall, our results showed that EO/EC can be used to efficiently remove organic matter, ammonia, TP, and heavy metals from landfill leachate.

2.
Water Res ; 169: 115239, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31706129

ABSTRACT

Electro-oxidation using RuO2-IrO2/Ti plate anode and electrocoagulation using iron plate anode were widely applied to remove ammonia and phosphate in an aquatic environment, respectively. In this work, we designed magnetically bound ZVI microparticles on RuO2-IrO2/Ti plate as a composite electrode for the simultaneous removal of ammonia and phosphate from aqueous solution via combined EO and EC (EO/EC) processes. We present a series of experiments to study such simultaneous removal under an electric field via the EO/EC process. In the electrochemical unit, mZVI-RuO2-IrO2/Ti, mZVI-graphite, and RuO2-IrO2/Ti electrodes were used as anodes. The influence of applied voltage, initial pH, zero-valent iron dosage, reaction temperature, and organic compounds on the EO/EC process was also examined. Ammonia and phosphate could be completely removed at an applied voltage of 10 V, pH of 7, zero-valent iron dosage of 0.1 g, and reaction temperature of 35 °C using mZVI-RuO2-IrO2/Ti anode when influent ammonia and phosphate concentrations is 200 and 100 mg L-1. Ammonia degradation was consistent with pseudo-zero-order kinetic model. The characterization was analyzed by scanning electron microscope-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Hence, the mZVI-RuO2-IrO2/Ti electrode can be used for efficient simultaneous removal of ammonia and phosphate.


Subject(s)
Ammonia , Water Pollutants, Chemical , Electrocoagulation , Electrodes , Iron , Oxidation-Reduction , Phosphates
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 22(1): 195-8, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24598677

ABSTRACT

This study was aimed to explore the molecular mechanisms for para-Bombay phenotype formation. The H antigen of these individuals were identified by serological techniques. The full coding region of alpha (1, 2) fucosyltransferase (FUT1) gene of these individuals was amplified by high-fidelity polymerase chain reaction (PCR). PCR product was identified by TOPO cloning sequencing. Analysis and comparison were used to explore the mechanisms of para-bombay phenotype formation in individuals. The results indicated that the full coding region of FUT1 DNA was successfully amplified by PCR and gel electrophoresis. DNA sequencing and analysis found that h1 (547-552delAG) existed in one chromosome and h4 (35C > T) existed in the other chromosome of NO.1 individual. Meantime, h1 (547-552delAG) was found in two chromosomes of NO.2 and NO.3 individual. It also means that FUT1 gene of NO.1 individual was h1h4 heterozygote, FUT1 gene of NO.2 and NO.3 individuals were h1h1 homozygote. It is concluded that homozygous and heterozygous mutation of FUT1 gene can lead to the formation of para-Bombay phenotype.


Subject(s)
ABO Blood-Group System/genetics , Asian People/genetics , Fucosyltransferases/genetics , Adolescent , Adult , Aged , Alleles , Base Sequence , DNA Mutational Analysis , Female , Genotype , Heterozygote , Homozygote , Humans , Male , Phenotype , Galactoside 2-alpha-L-fucosyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...