Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 10(21): 6217-6229, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36102692

ABSTRACT

Adjuvants play a critical role in enhancing vaccine efficacy; however, there is a need to develop new immunomodulatory compounds to address emerging pathogens and to expand the use of immunotherapies. Multidomain peptides (MDPs) are materials composed of canonical amino acids that form injectable supramolecular hydrogels under physiological salt and pH conditions. MDP hydrogels are rapidly infiltrated by immune cells in vivo and have previously been shown to influence cytokine production. Therefore, we hypothesized that these immunostimulatory characteristics would allow MDPs to function as vaccine adjuvants. Herein, we demonstrate that loading antigen into MDP hydrogels does not interfere with their rheological properties and that positively charged MDPs can act as antigen depots, as demonstrated by their ability to release ovalbumin (OVA) over a period of 7-9 days in vivo. Mice vaccinated with MDP-adjuvanted antigen generated significantly higher IgG titers than mice treated with the unadjuvanted control, suggesting that these hydrogels potentiate humoral immunity. Interestingly, MDP hydrogels did not elicit a robust cellular immune response, as indicated by the lower production of IgG2c and smaller populations of tetramer-positive CD8+ T splenocytes compared to mice vaccinated alum-adjuvanted OVA. Together, the data suggest that MDP hydrogel adjuvants strongly bias the immune response towards humoral immunity while evoking a very limited cellular immune response. As a result, MDPs may have the potential to serve as adjuvants for applications that benefit exclusively from humoral immunity.


Subject(s)
Hydrogels , Immunity, Humoral , Mice , Animals , Ovalbumin , Adjuvants, Immunologic/chemistry , Antigens , Peptides , Adjuvants, Pharmaceutic , Immunoglobulin G , Amino Acids , Cytokines
2.
ACS Appl Bio Mater ; 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35446025

ABSTRACT

Transected peripheral nerve injury (PNI) affects the quality of life of patients, which leads to socioeconomic burden. Despite the existence of autografts and commercially available nerve guidance conduits (NGCs), the complexity of peripheral nerve regeneration requires further research in bioengineered NGCs to improve surgical outcomes. In this work, we introduce multidomain peptide (MDP) hydrogels, as intraluminal fillers, into electrospun poly(ε-caprolactone) (PCL) conduits to bridge 10 mm rat sciatic nerve defects. The efficacy of treatment groups was evaluated by electromyography and gait analysis to determine their electrical and motor recovery. We then studied the samples' histomorphometry with immunofluorescence staining and automatic axon counting/measurement software. Comparison with negative control group shows that PCL conduits filled with an anionic MDP may improve functional recovery 16 weeks postoperation, displaying higher amplitude of compound muscle action potential, greater gastrocnemius muscle weight retention, and earlier occurrence of flexion contracture. In contrast, PCL conduits filled with a cationic MDP showed the least degree of myelination and poor functional recovery. This phenomenon may be attributed to MDPs' difference in degradation time. Electrospun PCL conduits filled with an anionic MDP may become an attractive tissue engineering strategy for treating transected PNI when supplemented with other bioactive modifications.

3.
J Young Investig ; 25(12)2022 Dec.
Article in English | MEDLINE | ID: mdl-37408595

ABSTRACT

In the current COVID-19 pandemic, various Automated Exposure Notification (AEN) systems have been proposed to help quickly identify potential contacts of infected individuals. All these systems try to leverage the current understanding of the following factors: transmission risk, technology to address risk modeling, system policies and privacy considerations. While AEN holds promise for mitigating the spread of COVID-19, using short-range communication channels (Bluetooth) in smartphones to detect close individual contacts may be inaccurate for modeling and informing transmission risk. This work finds that the current close contact definitions may be inadequate to reduce viral spread using AEN technology. Consequently, relying on distance measurements from Bluetooth Low-Energy may not be optimal for determining risks of exposure and protecting privacy. This paper's literature analysis suggests that AEN may perform better by using broadly accessible technologies to sense the respiratory activity, mask status, or environment of participants. Moreover, the paper remains cognizant that smartphone sensors can leak private information and thus recommends additional objectives for maintaining user privacy without compromising utility for population health. This literature review and analysis will simultaneously interest (i) health professionals who desire a fundamental understanding of the design and utility of AEN systems and (ii) technologists interested in understanding their epidemiological basis in the light of recent research. Ultimately, the two disparate communities need to understand each other to assess the value of AEN systems in mitigating viral spread, whether for the COVID-19 pandemic or for future ones.

4.
Biomaterials ; 185: 310-321, 2018 12.
Article in English | MEDLINE | ID: mdl-30265900

ABSTRACT

Hepatocellular carcinoma (HCC), as the fifth most common malignant cancer, develops and progresses mostly in a cirrhotic liver where stiff nodules are separated by fibrous bands. Scaffolds that can provide a 3D cirrhotic mechanical environment with complex native composition and biomimetic architecture are necessary for the development of better predictive tissue models. Here, we developed photocrosslinkable liver decellularized extracellular matrix (dECM) and a rapid light-based 3D bioprinting process to pattern liver dECM with tailorable mechanical properties to serve as a platform for HCC progression study. 3D bioprinted liver dECM scaffolds were able to stably recapitulate the clinically relevant mechanical properties of cirrhotic liver tissue. When encapsulated in dECM scaffolds with cirrhotic stiffness, HepG2 cells demonstrated reduced growth along with an upregulation of invasion markers compared to healthy controls. Moreover, an engineered cancer tissue platform possessing tissue-scale organization and distinct regional stiffness enabled the visualization of HepG2 stromal invasion from the nodule with cirrhotic stiffness. This work demonstrates a significant advancement in rapid 3D patterning of complex ECM biomaterials with biomimetic architecture and tunable mechanical properties for in vitro disease modeling.


Subject(s)
Bioprinting/methods , Extracellular Matrix/chemistry , Liver/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Biomechanical Phenomena , Bioprinting/economics , Cell Proliferation , Cell Survival , Disease Progression , Hep G2 Cells , Humans , Liver/cytology , Liver/pathology , Liver/ultrastructure , Liver Neoplasms/pathology , Printing, Three-Dimensional/economics , Time Factors
5.
Biomaterials ; 124: 106-115, 2017 04.
Article in English | MEDLINE | ID: mdl-28192772

ABSTRACT

Living tissues rely heavily on vascular networks to transport nutrients, oxygen and metabolic waste. However, there still remains a need for a simple and efficient approach to engineer vascularized tissues. Here, we created prevascularized tissues with complex three-dimensional (3D) microarchitectures using a rapid bioprinting method - microscale continuous optical bioprinting (µCOB). Multiple cell types mimicking the native vascular cell composition were encapsulated directly into hydrogels with precisely controlled distribution without the need of sacrificial materials or perfusion. With regionally controlled biomaterial properties the endothelial cells formed lumen-like structures spontaneously in vitro. In vivo implantation demonstrated the survival and progressive formation of the endothelial network in the prevascularized tissue. Anastomosis between the bioprinted endothelial network and host circulation was observed with functional blood vessels featuring red blood cells. With the superior bioprinting speed, flexibility and scalability, this new prevascularization approach can be broadly applicable to the engineering and translation of various functional tissues.


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/physiology , Microvessels/cytology , Microvessels/growth & development , Neovascularization, Physiologic/physiology , Printing, Three-Dimensional , Tissue Engineering/methods , Bioartificial Organs , Cells, Cultured , Humans
6.
Proc Natl Acad Sci U S A ; 113(8): 2206-11, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26858399

ABSTRACT

The functional maturation and preservation of hepatic cells derived from human induced pluripotent stem cells (hiPSCs) are essential to personalized in vitro drug screening and disease study. Major liver functions are tightly linked to the 3D assembly of hepatocytes, with the supporting cell types from both endodermal and mesodermal origins in a hexagonal lobule unit. Although there are many reports on functional 2D cell differentiation, few studies have demonstrated the in vitro maturation of hiPSC-derived hepatic progenitor cells (hiPSC-HPCs) in a 3D environment that depicts the physiologically relevant cell combination and microarchitecture. The application of rapid, digital 3D bioprinting to tissue engineering has allowed 3D patterning of multiple cell types in a predefined biomimetic manner. Here we present a 3D hydrogel-based triculture model that embeds hiPSC-HPCs with human umbilical vein endothelial cells and adipose-derived stem cells in a microscale hexagonal architecture. In comparison with 2D monolayer culture and a 3D HPC-only model, our 3D triculture model shows both phenotypic and functional enhancements in the hiPSC-HPCs over weeks of in vitro culture. Specifically, we find improved morphological organization, higher liver-specific gene expression levels, increased metabolic product secretion, and enhanced cytochrome P450 induction. The application of bioprinting technology in tissue engineering enables the development of a 3D biomimetic liver model that recapitulates the native liver module architecture and could be used for various applications such as early drug screening and disease modeling.


Subject(s)
Bioprinting/methods , Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , Liver/anatomy & histology , Printing, Three-Dimensional , Albumins/biosynthesis , Biomimetics/methods , Cell Culture Techniques , Cell Differentiation , Gene Expression , Hepatocytes/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Liver/cytology , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...