Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(22): 220202, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38877902

ABSTRACT

Entanglement in continuous-variable non-Gaussian states provides irreplaceable advantages in many quantum information tasks. However, the sheer amount of information in such states grows exponentially and makes a full characterization impossible. Here, we develop a neural network that allows us to use correlation patterns to effectively detect continuous-variable entanglement through homodyne detection. Using a recently defined stellar hierarchy to rank the states used for training, our algorithm works not only on any kind of Gaussian state but also on a whole class of experimentally achievable non-Gaussian states, including photon-subtracted states. With the same limited amount of data, our method provides higher accuracy than usual methods to detect entanglement based on maximum-likelihood tomography. Moreover, in order to visualize the effect of the neural network, we employ a dimension reduction algorithm on the patterns. This shows that a clear boundary appears between the entangled states and others after the neural network processing. In addition, these techniques allow us to compare different entanglement witnesses and understand their working. Our findings provide a new approach for experimental detection of continuous-variable quantum correlations without resorting to a full tomography of the state and confirm the exciting potential of neural networks in quantum information processing.

2.
Phys Rev Lett ; 132(12): 126602, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38579212

ABSTRACT

We introduce feedback-measurement technologies to achieve flexible control of Weyl points and conduct the first experimental demonstration of Weyl type I-II transition in mechanical systems. We demonstrate that non-Hermiticity can expand the Fermi arc surface states from connecting Weyl points to Weyl rings, and lead to a localization transition of edge states influenced by the interplay between band topology and the non-Hermitian skin effect. Our findings offer valuable insights into the design and manipulation of Weyl points in mechanical systems, providing a promising avenue for manipulating topological modes in non-Hermitian systems.

3.
Phys Rev Lett ; 130(25): 253201, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37418726

ABSTRACT

We study the strong-field ionization driven by quantum lights. Developing a quantum-optical-corrected strong-field approximation model, we simulate the photoelectron momentum distribution with squeezed-state light, which manifests as notably different interference structures from that with coherent-state (classical) light. With the saddle-point method, we analyze the electron dynamics and reveal that the photon statistics of squeezed-state light fields endows the tunneling electron wave packets with a time-varying phase uncertainty and modulates the photoelectron intracycle and intercycle interferences. Moreover, it is found the fluctuation of quantum light imprints significant influence on the propagation of tunneling electron wave packets, in which the ionization probability of electrons is considerably modified in time domain.


Subject(s)
Electrons , Hydrogen , Motion , Photons , Probability
4.
Sci Bull (Beijing) ; 68(13): 1366-1371, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37353435

ABSTRACT

The novel quantum effects induced by the free-electron-photons interaction have attracted increasing interest due to their potential applications in ultrafast quantum information processing. Here, we propose a scheme to generate optical cat states based on the quantum interference of multi-path free-electron-photons interactions that take place simultaneously with strong coupling strength. By performing a projection measurement on the electron, the state of light changes significantly from a coherent state into a non-Gaussian state with either Wigner negativity or squeezing property, both possess metrological power to achieve quantum advantage. More importantly, we show that the Wigner negativity oscillates with the coupling strength, and the optical cat states are successfully generated with high fidelity at all the oscillation peaks. This oscillation reveals the quantum interference effect of the multiple quantum pathways in the interaction of the electron with photons, by that various nonclassical states of light are promising to be fast prepared and manipulated. These findings inspire further exploration of emergent quantum phenomena and advanced quantum technologies with free electrons.

5.
Phys Rev Lett ; 128(20): 200401, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35657859

ABSTRACT

Non-Gaussian states with Wigner negativity are of particular interest in quantum technology due to their potential applications in quantum computing and quantum metrology. However, how to create such states at a remote location remains a challenge, which is important for efficiently distributing quantum resource between distant nodes in a network. Here, we experimentally prepare an optical non-Gaussian state with negative Wigner function at a remote node via local non-Gaussian operation and shared Gaussian entangled state existing quantum steering. By performing photon subtraction on one mode, Wigner negativity is created in the remote target mode. We show that the Wigner negativity is sensitive to loss on the target mode, but robust to loss on the mode performing photon subtraction. This experiment confirms the connection between the remotely created Wigner negativity and quantum steering. As an application, we present that the generated non-Gaussian state exhibits metrological power in quantum phase estimation.

6.
Phys Rev Lett ; 127(8): 087203, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34477416

ABSTRACT

The magnon cat state represents a macroscopic quantum superposition of collective magnetic excitations of large number spins that not only provides fundamental tests of macroscopic quantum effects but also finds applications in quantum metrology and quantum computation. In particular, remote generation and manipulation of Schrödinger cat states are particularly interesting for the development of long-distance and large-scale quantum information processing. Here, we propose an approach to remotely prepare magnon even or odd cat states by performing local non-Gaussian operations on the optical mode that is entangled with the magnon mode through pulsed optomagnonic interaction. By evaluating key properties of the resulting cat states, we show that for experimentally feasible parameters, they are generated with both high fidelity and nonclassicality, as well as with a size large enough to be useful for quantum technologies. Furthermore, the effects of experimental imperfections such as the error of projective measurements and dark count when performing single-photon operations have been discussed, where the lifetime of the created magnon cat states is expected to be t∼1 µs.

SELECTION OF CITATIONS
SEARCH DETAIL
...