Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 125(16): 3279-3287, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33878869

ABSTRACT

It is known that the acidity and reactivity of the CH bond can be enhanced after ionization. Also, this property plays a pivotal role in proton transfer reaction and in the formation of new molecules. Herein, infrared spectroscopy and high-precision quantum chemical calculations are used to study the neutral and cationic clusters of nitromethane-ammonia (CH3NO2-NH3). It is found that in the neutral cluster, CH3NO2 and NH3 are mainly bonded by three intermolecular hydrogen bonds, in which electrostatic contribution plays a major role. After vacuum ultraviolet (VUV) single-photon ionization of CH3NO2-NH3, the positive charge redistributes from the ionized nitrogen atom of NH3 to the CH3NO2 molecule immediately. Then, the proton of CH3NO2 transfers to NH3 to form a proton-transferred type structure CH2NO2-NH4+, without any effective energy barrier, due to the positive hyperconjugation of cationic nitromethane. A closed loop of positive charge transfer takes place in the CH3NO2-NH3 cluster after VUV ionization. The present work demonstrates that both the proton transfer reaction and charge transfer process have occurred in the ionized CH3NO2-NH3 cluster. Moreover, it is found that the proton transfer reaction is a result of the highly acidic CH bond caused by hyperconjugation between the σ (CH) bond and π orbital.

2.
Phys Chem Chem Phys ; 23(16): 9672-9678, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33616131

ABSTRACT

Acrylonitrile (AN) and ammonia (NH3) are two important nitrogen-containing interstellar molecules in outer space, especially on Titan. Herein, we measured infrared (IR) spectra of neutral and cationic AN-NH3 complexes by VUV single-photon ionization combined with time-of-flight mass spectrometry. On combining IR spectra with the theoretical calculations, we found that the molecules prefer to form a single-ring cyclic H-bonded structure in the neutral AN-NH3 and (AN)2-NH3 clusters. However, after ionization of AN-NH3 and (AN)2-NH3 clusters, a new C-N-covalent bond is confirmed to form directly between AN and NH3, without any energy barrier in the cationic complexes. Moreover, in the ionized (AN)2-NH3 cluster, the covalent C-N bond prefers to form between AN and NH3 rather than the two AN groups. These results provide spectroscopic evidence of AN forming a new molecule with NH3, induced by VUV radiation. The formation of the new C-N bond broadens our knowledge on the evolution of the prebiotic nitrogen-containing molecules in space.

3.
J Phys Chem A ; 124(12): 2398-2407, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32149507

ABSTRACT

Acrylonitrile (A) is one of the important interstellar molecules, which is considered closely related to the origin of life. And methanol (M) is one of the commonly used solvents, which is also found in outer space. Herein, we obtained the infrared (IR) spectra of size-selected AMn (n = 1-4) clusters in supersonic jet by monitoring their fragments of H+AMn-1 (n = 1-4) with vacuum ultraviolet single-photon soft ionization/IR-depletion technique. IR spectra of AMn (n = 1-4) clusters were recorded in the CH and OH vibration bands in the range of 2700-3800 cm-1. Spectra of AMn (n = 1-4) clusters are similar in the CH stretching regions, while those show significant variations in the OH stretching regions with the increase of methanol molecules. Calculated IR spectra, which were predicted with the B3LYP-D3(BJ)/aug-cc-pVDZ method, were employed to compare with the experimental results. For AM, AM2, and AM3, the structures with the methanol cyclic hydrogen bonded with [N1-C4(H6)] of acrylonitrile are more stable than the other H-bonded structures. For the most stable structures of AM4, however, the results show that the acrylonitrile is binding to a H-bonded ring formed by OH groups of four methanol molecules. The AM, AM2, and AM3 conformers with the single ring on the C1 side of acrylonitrile, such as C1-AM-a, C1-AM2-a, and C1-AM3-a, are dominant in the gas phase, while the C2-AM4-a conformer with the H-bonded ring formed by the OH groups on the C2 side of acrylonitrile is more stable than that of CM4-A-a in our experimental conditions (>130 K). These findings may provide valuable insight into the microsolvation process of the interstellar molecules and other biomolecules in gas phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...