Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 28(1): 206-216, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34587044

ABSTRACT

Despite the rising popularity of automated visualization tools, existing systems tend to provide direct results which do not always fit the input data or meet visualization requirements. Therefore, additional specification adjustments are still required in real-world use cases. However, manual adjustments are difficult since most users do not necessarily possess adequate skills or visualization knowledge. Even experienced users might create imperfect visualizations that involve chart construction errors. We present a framework, VizLinter, to help users detect flaws and rectify already-built but defective visualizations. The framework consists of two components, (1) a visualization linter, which applies well-recognized principles to inspect the legitimacy of rendered visualizations, and (2) a visualization fixer, which automatically corrects the detected violations according to the linter. We implement the framework into an online editor prototype based on Vega-Lite specifications. To further evaluate the system, we conduct an in-lab user study. The results prove its effectiveness and efficiency in identifying and fixing errors for data visualizations.

2.
IEEE Trans Vis Comput Graph ; 27(2): 453-463, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33048717

ABSTRACT

Visual data stories shown in the form of narrative visualizations such as a poster or a data video, are frequently used in data-oriented storytelling to facilitate the understanding and memorization of the story content. Although useful, technique barriers, such as data analysis, visualization, and scripting, make the generation of a visual data story difficult. Existing authoring tools rely on users' skills and experiences, which are usually inefficient and still difficult. In this paper, we introduce a novel visual data story generating system, Calliope, which creates visual data stories from an input spreadsheet through an automatic process and facilities the easy revision of the generated story based on an online story editor. Particularly, Calliope incorporates a new logic-oriented Monte Carlo tree search algorithm that explores the data space given by the input spreadsheet to progressively generate story pieces (i.e., data facts) and organize them in a logical order. The importance of data facts is measured based on information theory, and each data fact is visualized in a chart and captioned by an automatically generated description. We evaluate the proposed technique through three example stories, two controlled experiments, and a series of interviews with 10 domain experts. Our evaluation shows that Calliope is beneficial to efficient visual data story generation.

4.
Int J Mol Sci ; 19(1)2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29351213

ABSTRACT

It is well known that cyclinB3 (cycB3) plays a key role in the control of cell cycle progression. However, whether cycB3 is involved in stem cell fate determination remains unknown. The Drosophila ovary provides an exclusive model for studying the intrinsic and extrinsic factors that modulate the fate of germline stem cells (GSCs). Here, using this model, we show that DrosophilacycB3 plays a new role in controlling the fate of germline stem cells (GSC). Results from cycB3 genetic analyses demonstrate that cycB3 is intrinsically required for GSC maintenance. Results from green fluorescent protein (GFP)-transgene reporter assays show that cycB3 is not involved in Dad-mediated regulation of Bmp signaling, or required for dpp-induced bam transcriptional silencing. Double mutants of bam and cycB3 phenocopied bam single mutants, suggesting that cycB3 functions in a bam-dependent manner in GSCs. Deficiency of cycB3 fails to cause apoptosis in GSCs or influence cystoblast (CB) differentiation into oocytes. Furthermore, overexpression of cycB3 dramatically increases the CB number in Drosophila ovaries, suggesting that an excess of cycB3 function delays CB differentiation. Given that the cycB3 gene is evolutionarily conserved, from insects to humans, cycB3 may also be involved in controlling the fate of GSCs in humans.


Subject(s)
Cell Differentiation/genetics , Cyclin B/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Germ Cells/growth & development , Animals , Apoptosis/genetics , Drosophila/cytology , Drosophila/growth & development , Female , Gene Expression Regulation, Developmental , Germ Cells/cytology , Ovary/cytology , Ovary/growth & development , Proteomics , Stem Cells/cytology
5.
Cell Biol Int ; 42(7): 769-780, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29110400

ABSTRACT

The Drosophila ovary provides an attractive model for studying the extrinsic or intrinsic factors that regulate the fate of germline stem cells (GSCs). Using this model, we identified a new role for Drosophila spaghetti (spag), encoding a homolog of human RNA polymerase II-associated protein 3 (RPAP3), in regulating the fate of ovarian GSCs. Results from spag knockdown and genetic mosaic studies suggest that spag functions as an intrinsic factor for GSCs maintenance. Loss of Spag by, either spag RNAi or null mutation failed to trigger apoptosis in ovarian GSCs. Overexpression of spag led to negligible increases in the number of GSC/Cystoblast (CB) cells, suggesting that an excess of Spag is not sufficient to accelerate the proliferation of GSCs or delay CBs' differentiation. Our study provides evidence supporting that spag is involved in adult stem cells maintenance. In addition, the RNAi screen results showed that knockdown of Hsp90, one of known Spag interacting partners, led to loss of ovarian GSCs in Drosophila. Heterozygous mutations in hsp90 (hsp90/+) dramatically accelerated the GSC loss in spag RNAi ovaries, suggesting that the Spag-contained complex possibly plays an essential role in controlling the GSCs fate.


Subject(s)
Drosophila Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Germ Cells/cytology , Molecular Chaperones/genetics , Ovary/metabolism , Stem Cells/cytology , Animals , Cell Differentiation/genetics , Cell Lineage , Drosophila/genetics , Female , Humans
6.
Sci Rep ; 7(1): 5737, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720768

ABSTRACT

Emerging evidence supports that stem cells are regulated by both intrinsic and extrinsic mechanisms. However, factors that determine the fate of stem cells remain incompletely understood. The Drosophila testis provides an exclusive powerful model in searching for potential important regulatory factors and their underlying mechanisms for controlling the fate of germline stem cells (GSCs). In this study, we have found that Drosophila gilgamesh (gish), which encodes a homologue of human CK1-γ (casein kinase 1-gamma), is required intrinsically for GSC maintenance. Our genetic analyses indicate gish is not required for Dpp/Gbb signaling silencing of bam and is dispensable for Dpp/Gbb signaling-dependent Dad expression. Finally, we show that overexpression of gish fail to dramatically increase the number of GSCs. These findings demonstrate that gish controls the fate of GSCs in Drosophila testis by a novel Dpp/Gbb signaling-independent pathway.


Subject(s)
Casein Kinase I/metabolism , Drosophila Proteins/metabolism , Drosophila/physiology , Stem Cells/drug effects , Stem Cells/physiology , Testis/cytology , Animals , Male , Signal Transduction , Testis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...