Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Tissue Eng ; 11: 2041731420980136, 2020.
Article in English | MEDLINE | ID: mdl-34956585

ABSTRACT

Previous animal studies have demonstrated that the flavonoid small-molecule TrkB agonist, 7, 8-dihydroxyflavone (DHF), promotes axon regeneration in transected peripheral nerves. In the present study, we investigated the combined effects of 7, 8-DHF treatment and bone marrow-derived stem/stromal cells (BMSCs) engraftment into acellular nerve allografts (ANAs) and explore relevant mechanisms that may be involved. Our results show that TrkB and downstream ERK1/2 phosphorylation are increased upon 7, 8-DHF treatment compared to the negative control group. Also, 7, 8-DHF promotes proliferation, survival, and Schwann-like cell differentiation of BMSCs in vitro. While selective ERK1/2 inhibitor U0126 suppressed the effect of upregulation of ERK1/2 phosphorylation and decreased cell proliferation, survival, and Schwann-like cell differentiation partially induced by 7, 8-DHF. In vivo, 7, 8-DHF promotes survival of transplanted BMSCs and upregulates axonal growth and myelination in regenerating ANAs. 7, 8-DHF+BMSCs also improved motor endplate density of target musculature. These benefits were associated with increased motor functional recovery. 7, 8-DHF+BMSCs significantly upregulated TrkB and ERK1/2 phosphorylation expression in regenerating ANA, and increased TrkB expression in the lumbar spinal cord. The mechanism of 7, 8-DHF action may be related to its ability to upregulate TrkB signaling, and downstream activation of survival signaling molecules ERK1/2 in the regenerating ANAs and spinal cord and improved survival of transplanted BMSCs. This study provides novel foundational data connecting the benefits of 7, 8-DHF treatment in neural injury and repair to BMSCs biology and function and demonstrates a potential combination approach for the treatment of injured peripheral nerve via nerve graft transplant.

2.
J Neural Eng ; 16(5): 056011, 2019 08 12.
Article in English | MEDLINE | ID: mdl-31296795

ABSTRACT

OBJECTIVE: Our previous study demonstrated that the transcription factor, Krüppel-like Factor 7 (KLF7), stimulates axon regeneration following peripheral nerve injury. In the present study, we used a gene therapy approach to overexpress KLF7 in bone marrow-derived stem/stromal cells (BMSCs) as support cells, combined with acellular nerve allografts (ANAs) and determined the potential therapeutic efficacy of a KLF7-transfected BMSC nerve graft transplantation in a rodent model for sciatic nerve injury and repair. APPROACH: We efficiently transfected BMSCs with adeno-associated virus (AAV)-KLF7, which were then seeded in ANAs for bridging sciatic nerve defects. MAIN RESULTS: KLF7 overexpression promotes proliferation, survival, and Schwann-like cell differentiation of BMSCs in vitro. In vivo, KLF7 overexpression promotes transplanted BMSCs survival and myelinated fiber regeneration in regenerating ANAs; however, KLF7 did not improve Schwann-like cell differentiation of BMSCs within in the nerve grafts. KLF7-BMSCs significantly upregulated expression and secretion of neurotrophic factors by BMSCs, including nerve growth factor, ciliary neurotrophic factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in regenerating ANA. KLF7-BMSCs also improved motor axon regeneration, and subsequent neuromuscular innervation and prevention of muscle atrophy. These benefits were associated with increased motor functional recovery of regenerating ANAs. SIGNIFICANCE: Our findings suggest that KLF7-BMSCs promoted peripheral nerve axon regeneration and myelination, and ultimately, motor functional recovery. The mechanism of KLF7 action may be related to its ability to enhance transplanted BMSCs survival and secrete neurotrophic factors rather than Schwann-like cell differentiation. This study provides novel foundational data connecting the benefits of KLF7 in neural injury and repair to BMSC biology and function, and demonstrates a potential combination approach for the treatment of injured peripheral nerve via nerve graft transplant.


Subject(s)
Bone Marrow Transplantation/methods , Kruppel-Like Transcription Factors/biosynthesis , Mesenchymal Stem Cell Transplantation/methods , Nerve Regeneration/physiology , Sciatic Nerve/metabolism , Sciatic Neuropathy/metabolism , Animals , Cell Differentiation/physiology , Cells, Cultured , Female , Gene Expression , Kruppel-Like Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Sciatic Nerve/pathology , Sciatic Neuropathy/pathology , Sciatic Neuropathy/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...