Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 17(37): 24438-45, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26339695

ABSTRACT

Osmapentalyne cations synthesized recently show remarkable optical properties, such as near-infrared emission, unusual large Stokes shift and aggregation-enhanced emission. Here, the mechanisms behind those novel optical behaviors are revealed from the combined molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations. The results demonstrate that the large Stokes shift in the gas phase comes from a photoexcitation-induced deformation of the osmium plane, whereas in solution it corresponds to the variation of osmium ring symmetry. Although the central chromophore ring dominates the absorption and emission processes, the protecting groups PPh3 join the emission. As osmapentalyne cations are aggregated together in solution, the radical distribution functions of their mass-central distances display several peaks immersed in a broad envelope due to different aggregation pathways. However, the chromophore centers are protected by the PPh3 groups, the aggregation structures do not affect the Stokes shift too much, and the calculated aggregate-enhanced emission is consistent with experimental measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...