Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 20(6): 818-825, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33649563

ABSTRACT

The discovery of intrinsic ferromagnetism in ultrathin two-dimensional van der Waals crystals opens up exciting prospects for exploring magnetism in the ultimate two-dimensional limit. Here, we show that environmentally stable CrSe2 nanosheets can be readily grown on a dangling-bond-free WSe2 substrate with systematically tunable thickness down to the monolayer limit. These CrSe2/WSe2 heterostructures display high-quality van der Waals interfaces with well-resolved moiré superlattices and ferromagnetic behaviour. We find no apparent change in surface roughness or magnetic properties after months of exposure in air. Our calculations suggest that charge transfer from the WSe2 substrate and interlayer coupling within CrSe2 play a critical role in the magnetic order in few-layer CrSe2 nanosheets. The highly controllable growth of environmentally stable CrSe2 nanosheets with tunable thickness defines a robust two-dimensional magnet for fundamental studies and potential applications in magnetoelectronic and spintronic devices.

2.
J Am Chem Soc ; 140(43): 14217-14223, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-30346160

ABSTRACT

Two-dimensional (2D) layered materials have stimulated extensive research interest for their unique thickness-dependent electronic and optical properties. However, the layer-number-dependent studies on 2D materials to date are largely limited to exfoliated flakes with relatively small lateral size and poor yield. The direct synthesis of 2D materials with a precise control of the number of atomic layers remains a substantial synthetic challenge. Here we report a systematic study of chemical vapor deposition synthesis of large-area atomically thin 2D nickel telluride (NiTe2) single crystals and investigate the thickness dependent electronic properties. By controlling the growth temperature, we show that the highly uniform NiTe2 single crystals can be synthesized with precisely tunable thickness varying from 1, 2, 3, . . . to multilayers with a standard deviation (∼0.3 nm) of less than the thickness of a monolayer layer NiTe2. Our studies further reveal a systematic evolution of single crystal domain size and nucleation density with the largest lateral domain size up to ∼440 µm. X-ray diffraction, transmission electron microscopy, and high resolution scanning transmission electron microscope studies demonstrate that the resulting 2D crystals are high quality single crystals and adopt hexagonal 1T phase. Electrical transport studies reveal that the 2D NiTe2 single crystals show a strong thickness-tunable electrical properties, with an excellent conductivity up to 7.8 × 105 S m-1 and extraordinary breakdown current density up to 4.7 × 107 A/cm2. The systematic study and robust synthesis of NiTe2 nanosheets defines a reliable chemical route to 2D single crystals with precisely tailored thickness and could enable the design of new device architectures based on thickness-tunable electrical properties.

3.
Nanotechnology ; 29(47): 474002, 2018 Nov 23.
Article in English | MEDLINE | ID: mdl-30188325

ABSTRACT

Doping can effectively regulate the electrical and optical properties of two-dimensional semiconductors. Here, we present high-quality Pb-doped SnSe2 monolayer exfoliated using a micromechanical cleavage method. X-ray photoelectron spectroscopy measurement demonstrates that Pb content of the doped sample is ∼3.6% and doping induces the downward shift of the Fermi level with respect to the pure SnSe2. Transmission electron microscopy characterization exhibits that Pb0.036Sn0.964Se2 nanosheets have a high-quality hexagonal symmetry structure and Pb element is uniformly distributed in the nanosheets. The current of the SnSe2 field effect transistors (FETs) was found to be very difficult to turn off due to the high electron density. The FETs based on the Pb0.036Sn0.964Se2 monolayer show n-type behavior with a high on/off ratio of 106 which is higher than any values of SnSe2 FETs reported at the moment. The estimated carrier concentration of Pb0.036Sn0.964Se2 is approximately six times lower than that of SnSe2. The results suggest that the method of reducing carrier concentration by doping to achieve high on/off ratio is effective, and Pb-doped SnSe2 monolayer has significant potential in future nanoelectronic and optoelectronic applications.

4.
Adv Mater ; : e1801043, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30063088

ABSTRACT

Two-dimensional materials with intrinsic magnetism have recently drawn intense interest for both the fundamental studies and potential technological applications. However, the studies to date have been largely limited to mechanically exfoliated materials. Herein, an atmospheric pressure chemical vapor deposition route to ultrathin group VB metal telluride MTe2 (M = V, Nb, Ta) nanoplates with thickness as thin as 3 nm is reported. It is shown that the resulting nanoplates can be systematically evolved from mostly thicker hexagonal domains to thinner triangular domains with an increasing flow rate of the carrier gas. X-ray diffraction and transmission electron microscopy studies reveal MTe2 (M = V, Nb, Ta) nanoplates are high-quality single crystals. High-resolution scanning transmission electron microscope imaging reveals the VTe2 and NbTe2 nanoplates adopt the hexagonal 1T phase and the TaTe2 nanoplates show a monoclinic distorted 1T phase. Electronic transport studies show that MTe2 single crystals exhibit metallic behavior. Magnetic measurements show that VTe2 and NbTe2 exhibit ferromagnetism and TaTe2 shows paramagnetic behavior. The preparation of ultrathin few-layered MTe2 nanoplates will open up exciting opportunities for the burgeoning field of spintronics, sensors, and magneto-optoelectronics.

5.
Nano Lett ; 18(6): 3523-3529, 2018 06 13.
Article in English | MEDLINE | ID: mdl-29786447

ABSTRACT

The recent discovery of topological semimetals has stimulated extensive research interest due to their unique electronic properties and novel transport properties related to a chiral anomaly. However, the studies to date are largely limited to bulk crystals and exfoliated flakes. Here, we report the controllable synthesis of ultrathin two-dimensional (2D) platinum telluride (PtTe2) nanosheets with tunable thickness and investigate the thickness-dependent electronic properties. We show that PtTe2 nanosheets can be readily grown, using a chemical vapor deposition approach, with a hexagonal or triangular geometry and a lateral dimension of up to 80 µm, and the thickness of the nanosheets can be systematically tailored from over 20 to 1.8 nm by reducing the growth temperature or increasing the flow rate of the carrier gas. X-ray-diffraction, transmission-electron microscopy, and electron-diffraction studies confirm that the resulting 2D nanosheets are high-quality single crystals. Raman spectroscopic studies show characteristics Eg and A1g vibration modes at ∼109 and ∼155 cm-1, with a systematic red shift with increasing nanosheet thickness. Electrical transport studies show the 2D PtTe2 nanosheets display an excellent conductivity up to 2.5 × 106 S m-1 and show strong thickness-tunable electrical properties, with both the conductivity and its temperature dependence varying considerably with the thickness. Moreover, 2D PtTe2 nanosheets show an extraordinary breakdown current density up to 5.7 × 107 A/cm2, the highest breakdown current density achieved in 2D metallic transition-metal dichalcogenides to date.

6.
Sci Rep ; 5: 12849, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26238034

ABSTRACT

Three ZnAl2O4 samples were prepared via a modified polyacrylamide gel method using a citric acid solution with different aluminum salt starting materials, including AlCl3 ∙ 6H2O, Al2(SO4)3 ∙ 18H2O, and Al(NO3)3 ∙ 9H2O under identical conditions. The influence of different aluminum salts on the morphologies, phase purity, and optical and fluorescence properties of the as-prepared ZnAl2O4 nanoparticles were studied. The experimental results demonstrate that the phase purity, particle size, morphology, and optical and fluorescence properties of ZnAl2O4 nanoparticles can be manipulated by the use of different aluminum salts as starting materials. The energy bandgap (Eg) values of ZnAl2O4 nanoparticles increase with a decrease in particle size. The fluorescence spectra show that a major blue emission band around 400 nm and two weaker side bands located at 410 and 445 nm are observed when the excitation wavelength is 325 nm. The ZnAl2O4 nanoparticles prepared from Al(NO3)3 ∙ 9H2O exhibit the largest emission intensity among the three ZnAl2O4 samples, followed in turn by the ZnAl2O4 nanoparticles prepared from Al2(SO4)3 ∙ 18H2O and AlCl3∙6H2O. These differences are attributed to combinational changes in Eg and the defect types of the ZnAl2O4 nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...