Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Comb Sci ; 18(12): 723-739, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27797481

ABSTRACT

Synthesis, structural, and retrostructural analysis of a library containing 16 self-assembling perylene (PBI), 1,6,7,12-tetrachloroperylene (Cl4PBI), naphthalene (NBI), and pyromellitic (PMBI) bisimides functionalized with environmentally friendly AB3 chiral racemic semifluorinated minidendrons at their imide groups via m = 0, 1, 2, and 3 methylene units is reported. These semifluorinated compounds melt at lower temperatures than homologous hydrogenated compounds, permitting screening of all their thermotropic phases via structural analysis to discover thermodynamically controlled helical crystallization from propeller-like, cogwheel, and tilted molecules as well as lamellar-like structures. Thermodynamically controlled helical crystallization was discovered for propeller-like PBI, Cl4PBI and NBI with m = 0. Unexpectedly, assemblies of twisted Cl4PBIs exhibit higher order than those of planar PBIs. PBI with m = 1, 2, and 3 form a thermodynamically controlled columnar hexagonal 2D lattice of tilted helical columns with intracolumnar order. PBI and Cl4PBI with m = 1 crystallize via a recently discovered helical cogwheel mechanism, while NBI and PMBI with m = 1 form tilted helical columns. PBI, NBI and PMBI with m = 2 generate lamellar-like structures. 3D and 2D assemblies of PBI with m = 1, 2, and 3, NBI with m = 1 and PMBI with m = 2 exhibit 3.4 Å π-π stacking. The library approach applied here and in previous work enabled the discovery of six assemblies which self-organize via thermodynamic control into 3D and 2D periodic arrays, and provides molecular principles to predict the supramolecular structure of electronically active components.


Subject(s)
Crystallization , Imides/chemistry , Imides/chemical synthesis , Naphthalenes/chemistry , Perylene/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/chemical synthesis , Combinatorial Chemistry Techniques/methods , Molecular Structure , Stereoisomerism , Thermodynamics
2.
Nat Chem ; 8(1): 80-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26673268

ABSTRACT

The functions of complex crystalline systems derived from supramolecular biological and non-biological assemblies typically emerge from homochiral programmed primary structures via first principles involving secondary, tertiary and quaternary structures. In contrast, heterochiral and racemic compounds yield disordered crystals, amorphous solids or liquids. Here, we report the self-assembly of perylene bisimide derivatives in a supramolecular helix that in turn self-organizes in columnar hexagonal crystalline domains regardless of the enantiomeric purity of the perylene bisimide. We show that both homochiral and racemic perylene bisimide compounds, including a mixture of 21 diastereomers that cannot be deracemized at the molecular level, self-organize to form single-handed helical assemblies with identical single-crystal-like order. We propose that this high crystalline order is generated via a cogwheel mechanism that disregards the chirality of the self-assembling building blocks. We anticipate that this mechanism will facilitate access to previously inaccessible complex crystalline systems from racemic and homochiral building blocks.


Subject(s)
Imides/chemistry , Imides/chemical synthesis , Models, Molecular , Perylene/analogs & derivatives , Circular Dichroism , Crystallization , Macromolecular Substances , Magnetic Resonance Spectroscopy , Molecular Structure , Perylene/chemical synthesis , Perylene/chemistry , Phase Transition , Solutions , Spectrophotometry, Ultraviolet , Stereoisomerism , X-Ray Diffraction
3.
J Am Chem Soc ; 137(15): 5210-24, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25830346

ABSTRACT

A nonplanar, twisted, and flexible tetrachlorinated perylene bisimide (Cl4PBI) was functionalized with two AB3 minidendrons containing hydrogenated or semifluorinated dodecyl groups. The hydrogenated dendron was attached to the imide groups of Cl4PBI via m = 0, 1, and 2 methylenic units, whereas the dendron containing semifluorinated groups was attached via m = 3 or a di(ethylene oxide) linker (m = 2EO). The supramolecular structures of these compounds, determined by a combination of differential scanning calorimetry, X-ray diffraction, and solid-state NMR, were compared with those of nonchlorinated planar and rigid PBI reported previously, which demonstrated the thermodynamically controlled formation of 2D periodic arrays at high temperatures and 3D arrays at low temperatures. The molecularly less ordered Cl4PBI containing hydrogenated dendrons self-organize into exclusively 3D crystalline periodic arrays under thermodynamic control for m = 0 and 2, while the more highly molecularly ordered PBI produced less stable and ordered 3D crystals and also 2D assemblies. This induction of a higher degree of 3D order in supramolecular assemblies of the less well-ordered molecular building blocks was unanticipated. The semifluorinated dendronized Cl4PBI with m = 3 formed a 2D columnar hexagonal array under kinetic control, whereas the compound with m = 2EO formed an unusual 2D honeycomb-like hexagonal phase under thermodynamic control. These Cl4PBI compounds provide a new route to stable crystalline assemblies via thermodynamic control at lower temperatures than previously obtained with PBI, thus generating 3D order in an accessible range of temperature of interest for structural analysis and for technological applications.


Subject(s)
Hydrocarbons, Chlorinated/chemistry , Imides/chemistry , Macromolecular Substances/chemistry , Perylene/analogs & derivatives , Hydrocarbons, Chlorinated/chemical synthesis , Macromolecular Substances/chemical synthesis , Models, Molecular , Molecular Structure , Perylene/chemistry
4.
Angew Chem Int Ed Engl ; 54(13): 4036-40, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25656452

ABSTRACT

Glycodendrimersomes with programmable surface display of glycan, together with artificially engineered galectins, were used to understand the physiological significance of human lectins with homodimeric and tandem-repeat-type displays. The mode of topological surface presentation and the density of glycan affected vesicle aggregation mediated by multivalent carbohydrate-protein interactions. The cross-linking capacity of homodimeric lectins was enhanced by covalent connection of the two carbohydrate-binding sites. These findings highlight the value of glycodendrimersomes as versatile cell membrane mimetics, and assays provide diagnostic tools for protein functionality. This work also provides guidelines for the design of cell separators, bioactive matrices, bioeffectors, and other biomedical applications.


Subject(s)
Cells/drug effects , Dendrimers/chemistry , Galectins/chemistry , Binding Sites/drug effects , Carbohydrate Conformation , Carbohydrates/chemistry , Cell Line, Tumor , Cell Membrane/chemistry , Concanavalin A/chemistry , Cross-Linking Reagents , Fluorescent Dyes , Galectins/chemical synthesis , Humans , Models, Molecular , Surface Properties , Tandem Repeat Sequences
5.
Chem Soc Rev ; 44(12): 3900-23, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-25325787

ABSTRACT

This tutorial review summarizes strategies elaborated for the discovery and prediction of programmed primary structures derived from quasi-equivalent constitutional isomeric libraries of self-assembling dendrons, dendrimers and dendronized polymers. These libraries demonstrate an 82% predictability, defined as the percentage of similar primary structures resulting in at least one conserved supramolecular shape with internal order. A combination of structural and retrostructural analysis that employs methodologies transplanted from structural biology, adapted to giant supramolecular assemblies was used for this process. A periodic table database of programmed primary structures was elaborated and used to facilitate the emergence of a diversity of functions in complex dendrimer systems via first principles. Assemblies generated by supramolecular and covalent polymer backbones were critically compared. Although by definition complex functional systems cannot be designed, this tutorial hints to a methodology based on database analysis principles to facilitate design principles that may help to mediate an accelerated emergence of chemical, physical and most probably also societal, political and economic complex systems on a shorter time scale and lower cost than by the current methods. This tutorial review is limited to the simplest, synthetically most accessible self-assembling minidendrons, minidendrimers and polymers dendronized with minidendrons that are best analyzed and elucidated at molecular, supramolecular and theoretical levels, and most used in other laboratories. These structures are all interrelated, and their principles expand in a simple way to their higher generations.

6.
Angew Chem Int Ed Engl ; 54(1): 114-7, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25327867

ABSTRACT

Fullerene-based liquid crystalline materials have both the excellent optical and electrical properties of fullerene and the self-organization and external-field-responsive properties of liquid crystals (LCs). Herein, we demonstrate a new family of thermotropic [60]fullerene supramolecular LCs with hierarchical structures. The [60]fullerene dyads undergo self-organization driven by π-π interactions to form triple-layer two-dimensional (2D) fullerene crystals sandwiched between layers of alkyl chains. The lamellar packing of 2D crystals gives rise to the formation of supramolecular LCs. This design strategy should be applicable to other molecules and lead to an enlarged family of 2D crystals and supramolecular liquid crystals.

7.
J Am Chem Soc ; 137(2): 807-19, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25549011

ABSTRACT

Simple synthetic methods for a strongly electron-accepting naphthalene bisimide (NBI) derivative functionalized with a new environmentally friendly chiral racemic semifluorinated alkyl group and with AB3 minidendrons containing the same semifluorinated group are reported. The semifluorinated dendron was attached to the imide groups of the NBI via one, two, and three (m = 1, 2, 3) methylenic units. The NBI-containing semifluorinated groups and the dendronized NBI with m = 1 and 2 self-organize into lamellar crystals. The dendronized NBI with m = 3 self-assembles into an unprecedentedly complex and ordered column that self-organizes in a columnar hexagonal periodic array. This array undergoes a continuous transition to a columnar hexagonal superlattice that does not display a first-order phase transition during analysis by differential scanning calorimetry at heating and cooling rates of 10 and 1 °C/min. These complex columnar hexagonal periodic arrays with intramolecular order could be elucidated only by a combination of powder and fiber X-ray diffraction studies and solid-state NMR experiments. The lamellar crystals self-organized from m = 1 and the two highly ordered columnar hexagonal periodic arrays of m = 3 are assembled via thermodynamically controlled processes. Since strongly electron-accepting derivatives are of great interest to replace fullerene acceptors in organic photovoltaics and for other supramolecular electronic materials, the multitechnique structural analysis methodology elaborated here must be taken into consideration in all related studies.


Subject(s)
Halogenation , Imides/chemistry , Naphthalenes/chemistry , Electron Transport , Green Chemistry Technology , Models, Molecular , Molecular Conformation , Stereoisomerism , Temperature
8.
Angew Chem Int Ed Engl ; 53(41): 10899-903, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-24923471

ABSTRACT

An accelerated modular synthesis produced 18 amphiphilic Janus glycodendrimers with three different topologies formed from either two or one carbohydrate head groups or a mixed constellation with a noncarbohydrate hydrophilic arm. By simple injection of their THF solutions into water or buffer, all of the Janus compounds self-assembled into uniform, stable, and soft unilamellar vesicles, denoted glycodendrimersomes. The mixed constellation topology glycodendrimersomes were demonstrated to be most efficient in binding plant, bacterial, and human lectins. This evidence with biomedically relevant receptors offers a promising perspective for the application of such glycodendrimersomes in targeted drug delivery, vaccines, and other areas of nanomedicine.


Subject(s)
Dendrimers/chemistry , Polysaccharides/chemistry , Unilamellar Liposomes/chemistry , Carbohydrates/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Lectins/chemistry , Ligands , Nanomedicine
9.
Proc Natl Acad Sci U S A ; 111(25): 9058-63, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24927561

ABSTRACT

A constitutional isomeric library synthesized by a modular approach has been used to discover six amphiphilic Janus dendrimer primary structures, which self-assemble into uniform onion-like vesicles with predictable dimensions and number of internal bilayers. These vesicles, denoted onion-like dendrimersomes, are assembled by simple injection of a solution of Janus dendrimer in a water-miscible solvent into water or buffer. These dendrimersomes provide mimics of double-bilayer and multibilayer biological membranes with dimensions and number of bilayers predicted by the Janus compound concentration in water. The simple injection method of preparation is accessible without any special equipment, generating uniform vesicles, and thus provides a promising tool for fundamental studies as well as technological applications in nanomedicine and other fields.


Subject(s)
Biomimetic Materials/chemistry , Dendrimers/chemistry , Lipid Bilayers
10.
J Am Chem Soc ; 136(19): 7169-85, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24758745

ABSTRACT

A library of dendronized cyclotriveratrylene (CTV) crowns substituted with chiral, racemic, or achiral peripheral alkyl chains, including enantiopure R and S branched alkyls, "racemic by mixture", "racemic by synthesis", n-octyl, and n-dodecyl groups was synthesized. In solvophobic solvents and in bulk they self-assemble in helical columns. Their solution and bulk shape-persistent supramolecular structures were determined by a complementary combination of circular dichroism (CD) and UV in solution and thin film, microspot CD in thin film, differential scanning calorimetry combined with fiber X-ray diffraction, computer simulation, and molecular models. In solution, self-assembly via a cooperative mechanism generates single-handed columns from enantiopure CTVs and mixtures of right- and left-handed columns from racemic by mixture, racemic by synthesis, other combinations of R and S, and even from achiral compounds. In bulk state all supramolecular columns form a 3D hexagonal crystalline phase, Φ(h)(k) (P63 symmetry), that can be obtained only from single-handed columns and a columnar hexagonal 2D liquid crystal, Φ(h). The highest order Φ(h)(k) consists of enantiopure single-handed columns that are slightly distorted 12-fold triple helices. The "hat-shaped" dendronized CTV assembles in bent-branch pine-tree columns that allow interdigitation of alkyl groups in adjacent columns regardless of their direction. Enantiomerically rich, racemic, and achiral compositions undergo deracemization in the crystal state by transfer of the transient disc-like conformer of dendronized CTV from column to column during crown inversion. Solid state NMR experiments identified motional processes that allow such transfer. This unprecedented supramolecular chiral self-sorting will impact the creation of functions in complex systems.


Subject(s)
Alkanes/chemistry , Crown Compounds/chemistry , Dendrimers/chemistry , Liquid Crystals/chemistry , Alkanes/chemical synthesis , Alkylation , Computer Simulation , Crown Compounds/chemical synthesis , Dendrimers/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Stereoisomerism , X-Ray Diffraction
11.
ACS Nano ; 8(2): 1554-65, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24397243

ABSTRACT

An accelerated modular synthesis of six libraries containing 29 amphiphilic Janus dendrimers, employed to discover and predict functions via primary structures, is reported. These dendrimers were constructed from a single hydrophobic and a single hydrophilic dendron, interconnected with l-Ala to form two constitutional isomeric libraries, with Gly to produce one library, and with l-propanediol ester to generate two additional constitutional isomeric libraries. They are denoted "single-single" amphiphilic Janus dendrimers. Assemblies obtained by injection of their ethanol solution into water were analyzed by dynamic light scattering and cryogenic transmission electron microscopy. A diversity of complex structures including soft and hard dendrimersomes, cubosomes, solid lamellae, and rod-like micelles were obtained in water. It was discovered that the "single-single" amphiphilic Janus dendrimers containing three triethylene glycol groups in the hydrophilic dendron favored the formation of dendrimersomes. Assemblies in bulk analyzed by differential scanning calorimetry and powder X-ray diffraction revealed that the amphiphilic Janus dendrimers with melting point or glass transition below room temperature self-assemble into soft dendrimersomes in water, while those with higher temperature transitions produce hard assemblies. In the range of concentrations where their size distribution is narrow, the diameter of the dendrimersomes is predictable by the d-spacing of their assemblies in bulk. These results suggested the synthesis of Library 6 containing two simpler constitutional isomeric benzyl ester based amphiphilic Janus dendrimers that self-assemble in water into soft dendrimersomes and multidendrimersome dendrimersomes with predictable dimensions.


Subject(s)
Dendrimers , Calorimetry, Differential Scanning , Cryoelectron Microscopy , Microscopy, Electron, Transmission
12.
Article in English | MEDLINE | ID: mdl-25569931

ABSTRACT

Diffuse Optical Tomography (DOT) has become an emerging non-invasive technology, and has been widely used in clinical diagnosis. Functional near-infrared (FNIR) is one of the important applications of DOT. However, FNIR is used to reconstruct two-dimensional (2D) images for the sake of good spatial and temporal resolution. In this paper we propose a multiple-input and multiple-output (MIMO) based data extraction algorithm method in order to increase the spatial and temporal resolution. The non-linear iterative method is used to reconstruct better resolution images layer by layer. In terms of theory, the simulation results and original images are nearly identical. The proposed reconstruction method performs good spatial resolution, and has a depth resolutions capacity of three layers.


Subject(s)
Algorithms , Tomography, Optical/methods , Computer Simulation , Imaging, Three-Dimensional , Photons
13.
Macromol Rapid Commun ; 35(5): 579-84, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24375679

ABSTRACT

Liver cancer remains a significant medical problem and one promising therapeutic approach is to embolize the tumor. One emerging embolization strategy is to use thermoresponsive materials that can be injected but gel at the tumor site. It is now reported on thermoresponsive nanocomposites generated by grafting poly(N-isopropylacrylamide) chains on bacterial cellulose nanowhiskers. Chemical and physical evidences are provided for grafting and demonstrated a sol-gel transition when the temperature is increased above 34.3 °C. Cytotoxicity test in human umbilical vein endothelial cells indicates the excellent biocompatibility of these nanocomposites for use as embolic materials. These results suggest that the nanocomposites offer appropriate properties for embolization of hepatocellular carcinoma.


Subject(s)
Embolization, Therapeutic , Nanocomposites/chemistry , Acrylic Resins/chemistry , Calorimetry, Differential Scanning , Cell Survival , Cellulose/chemistry , Cellulose/ultrastructure , Human Umbilical Vein Endothelial Cells/cytology , Humans , Injections , Nanocomposites/ultrastructure , Spectroscopy, Fourier Transform Infrared
14.
J Phys Chem B ; 117(43): 13698-709, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24102116

ABSTRACT

An asymmetric tapered Janus bisamide supramolecule consisting of 1,4-bis[3,4,5-tris(alkan-1-yloxy)benzamido]benzene bisamide (abbreviated as C22PhBAEO3) can possess three-dimensional (3D) long-range order under mild thermal treatment conditions. To understand its structural formation and unique phase-transition processes, the locally detailed structure and molecular dynamics of its structural elements in disordered and ordered phases of C22PhBAEO3 were investigated using various solid-state (SS) NMR techniques at the atomic level. On the basis of the determined conformations and packing structures of the alkyl chains in ordered and disordered crystalline phases, along with the geometry and kinetic parameters of the structural elements' dynamics, this study addresses the self-assembly, the phase-transition mechanisms, and the relationship between the structure and dynamics of these asymmetric Janus bisamide supramolecules.

15.
J Am Chem Soc ; 135(24): 9055-77, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23692629

ABSTRACT

The modular synthesis of 7 libraries containing 51 self-assembling amphiphilic Janus dendrimers with the monosaccharides D-mannose and D-galactose and the disaccharide D-lactose in their hydrophilic part is reported. These unprecedented sugar-containing dendrimers are named amphiphilic Janus glycodendrimers. Their self-assembly by simple injection of THF or ethanol solution into water or buffer and by hydration was analyzed by a combination of methods including dynamic light scattering, confocal microscopy, cryogenic transmission electron microscopy, Fourier transform analysis, and micropipet-aspiration experiments to assess mechanical properties. These libraries revealed a diversity of hard and soft assemblies, including unilamellar spherical, polygonal, and tubular vesicles denoted glycodendrimersomes, aggregates of Janus glycodendrimers and rodlike micelles named glycodendrimer aggregates and glycodendrimermicelles, cubosomes denoted glycodendrimercubosomes, and solid lamellae. These assemblies are stable over time in water and in buffer, exhibit narrow molecular-weight distribution, and display dimensions that are programmable by the concentration of the solution from which they are injected. This study elaborated the molecular principles leading to single-type soft glycodendrimersomes assembled from amphiphilic Janus glycodendrimers. The multivalency of glycodendrimersomes with different sizes and their ligand bioactivity were demonstrated by selective agglutination with a diversity of sugar-binding protein receptors such as the plant lectins concanavalin A and the highly toxic mistletoe Viscum album L. agglutinin, the bacterial lectin PA-IL from Pseudomonas aeruginosa, and, of special biomedical relevance, human adhesion/growth-regulatory galectin-3 and galectin-4. These results demonstrated the candidacy of glycodendrimersomes as new mimics of biological membranes with programmable glycan ligand presentations, as supramolecular lectin blockers, vaccines, and targeted delivery devices.


Subject(s)
Dendrimers/chemistry , Galactose/chemistry , Lactose/chemistry , Lectins/metabolism , Mannose/chemistry , Small Molecule Libraries/chemistry , Azides/chemical synthesis , Azides/chemistry , Azides/metabolism , Chemistry Techniques, Synthetic/methods , Dendrimers/chemical synthesis , Dendrimers/metabolism , Galactose/chemical synthesis , Galactose/metabolism , Humans , Lactose/chemical synthesis , Lactose/metabolism , Mannose/chemical synthesis , Mannose/metabolism , Models, Molecular , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/metabolism , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism
16.
Biomacromolecules ; 14(4): 1078-84, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23458422

ABSTRACT

Dispersions of poly(N-isopropylacrylamide-co-butyl methacrylate) (PNB) nanogels are known to exhibit reversible thermosensitive sol-gel phase behavior and can consequently be used in a wide range of biomedical applications. However, some dissatisfactory mechanical properties of PNB nanogels can limit their applications. In this paper, bacterial cellulose (BC) whiskers were first prepared by sulfuric acid hydrolysis and then nanosized by high-pressure homogenization for subsequent use in the preparation of BC whisker/PNB nanogel complexes (designated as BC/PNB). The mechanical properties of PNB was successfully enhanced, resulting in good biosafety. The BC/PNB nanogel dispersions exhibited phase transitions from swollen gel to shrunken gel with increasing temperature. In addition, differential scanning calorimetry (DSC) data showed that the thermosensitivity of PNB nanogels was retained. Rheological tests also indicated that BC/PNB nanogel complexes had stronger gel strengths when compared with PNB nanogels. The concentrated dispersions showed shear thinning behavior and improved toughness, both of which can play a key role in the medical applications of nanogel complexes. Furthermore, the BC/PNB nanogel complexes were noncytotoxic according to cytotoxicity and hemolysis tests. Concentrated BC/PNB nanogel dispersion displayed gel a forming capacity in situ by catheter injection, which indicates potential for a wide range of medical applications.


Subject(s)
Biocompatible Materials/chemical synthesis , Drug Carriers/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/chemical synthesis , Polyethyleneimine/chemistry , Polyethyleneimine/chemical synthesis , Polymethacrylic Acids/chemistry , Biocompatible Materials/metabolism , Cellulose/chemistry , Nanogels , Nanoparticles/chemistry , Temperature
17.
J Am Chem Soc ; 135(10): 4129-48, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23406582

ABSTRACT

The dendronized perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI), (3,4,5)12G1-1-PBI, was reported by our laboratory to self-assemble into complex helical columns containing dimers of dendronized PBI with one molecule in each stratum, with different intra- and interdimer rotation angles but identical intra- and interdimer distance of 3.5 Å, exhibiting a four-strata 2(1) helical repeat. A thermodynamically controlled 2D columnar hexagonal phase with short-range intracolumnar order represents the thermodynamic product at high temperature, while a kinetically controlled monoclinic columnar array with 3D periodicity is the thermodynamic product at low temperature. With heating and cooling rates higher than 10 °C/min to 1 °C/min, at low temperature the 2D columnar periodic array is the kinetic product for this dendronized PBI. Here the synthesis and structural analysis of a library of (3,4,5)nG1-m-PBI with n = 12 to 6 and m = 1 are reported. A combination of differential scanning calorimetry, X-ray diffraction on powder and orientated fibers, including pattern simulation and electron density map reconstruction, and solid-state NMR, all as a function of temperature and heating and cooling rate, was employed for their structural analysis. It was discovered that at low temperature the as-prepared n = 12 to 10 exhibit a 3D layered array that transforms irreversibly into columnar periodicities during heating and cooling. Also the kinetically controlled 3D columnar phase of n = 12 becomes thermodynamically controlled for n = 10, 9, 8, 7, and 6. This unprecedented transformation is expected to facilitate the design of functions from dendronized PBI and other self-assembling building blocks.


Subject(s)
Dendrimers/chemical synthesis , Imides/chemical synthesis , Perylene/analogs & derivatives , Thermodynamics , Crystallography, X-Ray , Dendrimers/chemistry , Imides/chemistry , Kinetics , Models, Molecular , Molecular Structure , Perylene/chemical synthesis , Perylene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...