Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 63(12): 3326-3333, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856484

ABSTRACT

This paper introduces a method for analyzing the spatiotemporal progression of laser-induced shock waves using the beam deflection technique. This method allows for the accurate measurement of the shock wave evolution and can replace high-speed cameras. The results demonstrate the detection signals at various distances and energies, as well as the extraction and reconstruction of the shock wave velocities and propagation trajectories. The characteristic velocities of the shock waves propagating in air from various metals and energetic materials were measured and compared with the results obtained from high-speed cameras. The study also predicts the macroscopic detonation velocity of energetic materials based on the characteristic velocity. Overall, this approach offers a reliable and cost-effective method for studying the shock waves and has potential applications in various fields.

2.
Int J Biol Macromol ; 275(Pt 1): 133336, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936568

ABSTRACT

Exosomes (Exo) generated from mesenchymal stem cells (MSCs) have great therapeutic potential in ischemia-reperfusion treatment. For best therapeutic effect, high quality Exo product and effective delivery system are indispensable. In this study, we developed a new strategy for ischemia-reperfusion recovery by combining MSCs 3D (3D-MSC) culturing technology to generate Exo (3D-MSC-Exo) and microneedle for topical delivery. Firstly, primary MSCs from neonatal mice were isolated and 3D cultured with gelatin methacryloyl (GelMA) hydrogel to prepare 3D-MSC-Exo. The 3D-MSC showed better viability and 3D-MSC-Exo exhibited more effective effects of reducing neuroinflammation, inhibiting glial scarring, and promoting angiogenesis. Subsequently, the biocompatible GelMA was used to construct microneedles for 3D-Exo delivery (GelMA-MN@3D-Exo). The results demonstrated GelMA microneedles had excellent 3D-Exo loading capacity and enabled continuous 3D-Exo release to maintain effective therapeutic concentrations. Furthermore, the rat middle cerebral artery occlusion (MCAO) model was established to evaluate the therapeutic effect of GelMA-MN@3D-Exo in ischemia-reperfusion in vivo. Animal experiments showed that the GelMA-MN@3D-Exo system could effectively reduce the local neuroinflammatory reaction, promote angiogenesis and minimize glial scar proliferation in ischemia-reperfusion. The underlying reasons for the stronger neuroprotective effect of 3D-Exo was further studied using mass spectrometry and transcriptome assays, verifying their effects on immune regulation and cell proliferation. Taken together, our findings demonstrated that GelMA-MN@3D-Exo microneedle can effectively attenuate ischemia-reperfusion cell damage in the MCAO model, which provides a promising therapeutic strategy for ischemia-reperfusion recovery.

3.
J Biomed Opt ; 29(Suppl 1): S11526, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38505736

ABSTRACT

Significance: Photoacoustic (PA) technology shows great potential for bone assessment. However, the PA signals in cancellous bone are complex due to its complex composition and porous structure, making such signals challenging to apply directly in bone analysis. Aim: We introduce a photoacoustic differential attenuation spectrum (PA-DAS) method to separate the contribution of the acoustic propagation path to the PA signal from that of the source, and theoretically and experimentally investigate the propagation attenuation characteristics of cancellous bone. Approach: We modified Biot's theory by accounting for the high frequency and viscosity. In parallel with the rabbit osteoporosis model, we build an experimental PA-DAS system featuring an eccentric excitation differential detection mechanism. Moreover, we extract a PA-DAS quantization parameter-slope-to quantify the attenuation of high- and low-frequency components. Results: The results show that the porosity of cancellous bone can be evaluated by fast longitude wave attenuation at different frequencies and the PA-DAS slope of the osteoporotic group is significantly lower compared with the normal group (**p<0.01). Conclusions: Findings demonstrate that PA-DAS effectively differentiates osteoporotic bone from healthy bone, facilitating quantitative assessment of bone mineral density, and osteoporosis diagnosis.


Subject(s)
Cancellous Bone , Osteoporosis , Animals , Rabbits , Cancellous Bone/diagnostic imaging , Ultrasonography/methods , Bone and Bones/diagnostic imaging , Bone Density , Osteoporosis/diagnostic imaging
4.
Opt Express ; 31(23): 38728-38743, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017970

ABSTRACT

The real-time online quantitative analysis instrument is highly desirable for many industrial fields. Herein, a new laser-induced breakdown spectroscopy (LIBS) setup with optimized optical route and high accuracy algorithm is designed and applied in a real industrial site. The components of total iron (TFe), silica (SiO2), aluminum oxide (Al2O3), and phosphorus (P) are quantitatively determined by the online LIBS system. The key optical part is a Maksutov-Cassegrain telescope, in which, two aspherical mirrors are specially designed and fabricated to reflect the broadband emission from ultraviolet 240 nm to infrared 890 nm with reflectivity over 90%, and pass the excited laser line of 1064 nm. The system could automatically adjust the focal length in the range of 780 mm to 940 mm. Based on the online LIBS system, the spectral pretreatment algorithm is also optimized including baseline removal and spectral normalization. The overlapped window slide (OWS) algorithm avoids the deformation of emission peaks in spectral baseline removal, in addition, two normalization steps by total back area and total spectral intensity within the sub-channel are applied to improve the spectral data stabilization. The calibration and validation are performed by utilizing the emissions that are insensitive to the detection distance. Compared with the traditional method, the prediction result shows that the root of mean square error of prediction (RMSEP) decreased from 5.091% to 1.2328%, and the mean absolute error (MAE) reduced from 4.801% to 0.9126% for TFe. Eventually, the online measurement shows good agreement with the official standard results. The high-precision online determination system based on LIBS will upgrade low frequency sampling of traditional detection to high-frequency real online determination in many industrial fields.

5.
Plants (Basel) ; 12(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37176801

ABSTRACT

Shading stress caused by plum rain season, which overlapped with grain filling process of fresh waxy maize in Southern China, significantly affected crop productivity. In order to investigate the effects of shading at different stages after pollination on the yield, accumulation, and remobilization of dry matter and nitrogen (N) in fresh waxy maize, field experiments were conducted, including shading at 1-7 (Z1), 8-14 (Z2), 15-21 (Z3), and 1-21 (Z4) days after pollination in 2020 and 2021. The results showed that shading reduced the fresh ear and grain yield and increased moisture content in Suyunuo5 (SYN5) and Jingkenuo2000 (JKN2000) compared to natural lighting treatment (CK). The ear yield decrease was more severe in Z4 (43.5%), followed by Z1 (29.7%). Post-silking dry matter and N accumulation and remobilization were decreased under shading stress, and those were lowest in Z4, followed by Z1. The remobilization of pre-silking dry matter and N were increased by shading stress, and the increase was highest in Z4, followed by Z1. The harvest index of dry matter and N was lowest in Z4 and second-lowest in Z1. In conclusion, shading decreased yield by affecting accumulation and remobilization of post-silking dry matter and N, and the impact was more serious when it introduced early during grain filling stage in fresh waxy maize production.

6.
J Agric Food Chem ; 71(1): 52-64, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36592042

ABSTRACT

Using agrochemicals against pest insects, fungi, and weeds plays a major part in maintaining and improving crop yields, which helps to solve the issue of food security. Due to the limited targets and resistance of agrochemicals, protein kinases are regarded as attractive potential targets to develop new agrochemicals. Recently, a lot of investigations have shown the extension of agrochemicals by targeting protein kinases, implying an increasing concern for this kind of method. However, few people have summarized and discussed the targetability of protein kinases contributing to the development of agrochemicals. In this work, we introduce the research on protein kinases as potential targets used in crop protection and discuss the prospects of protein kinases in the field of agrochemical development. This study may not only provide guidance for the contribution of protein kinases to the development of agrochemicals but also help nonprofessionals such as students learn and understand the role of protein kinases quickly.


Subject(s)
Agrochemicals , Insecta , Humans , Animals , Agrochemicals/pharmacology , Crop Protection , Plant Weeds
SELECTION OF CITATIONS
SEARCH DETAIL
...