Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 83: 123-136, 2024 May.
Article in English | MEDLINE | ID: mdl-38582143

ABSTRACT

Polymyxin is a lipopeptide antibiotic that is effective against multidrug-resistant Gram-negative bacteria. However, its clinical development is limited due to low titer and the presence of homologs. To address this, the polymyxin gene cluster was integrated into Bacillus subtilis, and sfp from Paenibacillus polymyxa was expressed heterologously, enabling recombinant B. subtilis to synthesize polymyxin B. Regulating NRPS domain inhibited formation of polymyxin B2 and B3. The production of polymyxin B increased to 329.7 mg/L by replacing the native promoters of pmxA, pmxB, and pmxE with PfusA, C2up, and PfusA, respectively. Further enhancement in this production, up to 616.1 mg/L, was achieved by improving the synthesis ability of 6-methyloctanoic acid compared to the original strain expressing polymyxin heterologously. Additionally, incorporating an anikasin-derived domain into the hybrid nonribosomal peptide synthase of polymyxin increased the B1 ratio in polymyxin B from 57.5% to 62.2%. Through optimization of peptone supply in the fermentation medium and fermentation in a 5.0-L bioreactor, the final polymyxin B titer reached 962.1 mg/L, with a yield of 19.24 mg/g maltodextrin and a productivity of 10.02 mg/(L·h). This study demonstrates a successful approach for enhancing polymyxin B production and increasing the B1 ratio through combinatorial metabolic engineering.


Subject(s)
Bacillus subtilis , Metabolic Engineering , Polymyxin B , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/biosynthesis , Multigene Family , Paenibacillus polymyxa/genetics , Paenibacillus polymyxa/metabolism , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism
2.
Synth Syst Biotechnol ; 9(1): 176-185, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348399

ABSTRACT

Polymyxin B, produced by Paenibacillus polymyxa, is used as the last line of defense clinically. In this study, exogenous mixture of precursor amino acids increased the level and proportion of polymyxin B1 in the total of polymyxin B analogs of P. polymyxa CJX518-AC (PPAC) from 0.15 g/L and 61.8 % to 0.33 g/L and 79.9 %, respectively. The co-culture of strain PPAC and recombinant Corynebacterium glutamicum-leu01, which produces high levels of threonine, leucine, and isoleucine, increased polymyxin B1 production to 0.64 g/L. When strains PPAC and C. glu-leu01 simultaneously inoculated into an optimized medium with 20 g/L peptone, polymyxin B1 production was increased to 0.97 g/L. Furthermore, the polymyxin B1 production in the co-culture of strains PPAC and C. glu-leu01 increased to 2.21 g/L after optimized inoculation ratios and fermentation medium with 60 g/L peptone. This study provides a new strategy to improve polymyxin B1 production.

3.
J Hazard Mater ; 439: 129674, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36104903

ABSTRACT

Antibiotic mixtures in the environment result in the development of bacterial strains with resistance against multiple antibiotics. Oxidases are versatile that can bio-remove antibiotics. Various laccases (LACs), manganese peroxidases (MNPs), and versatile peroxidase (VP) were reconstructed in Pichia pastoris. For the single antibiotics, over 95.0% sulfamethoxazole within 48 h, tetracycline, oxytetracycline, and norfloxacin within 96 h were bio-removed by recombinant VP with α-signal peptide, respectively. In a mixture of the four antibiotics, 80.2% tetracycline and 95.6% oxytetracycline were bio-removed by recombinant MNP2 with native signal peptide (NSP) within 8 h, whereas < 80.0% sulfamethoxazole was bio-removed within 72 h, indicating that signal peptides significantly impacted removal efficiencies of antibiotic mixtures. Regarding mediators for LACs, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) resulted in better removal efficiencies of multi-antibiotic mixtures than 1-hydroxybenzotriazole or syringaldehyde. Furthermore, artificial microbial consortia (AMC) producing LAC2 and MNP2 with NSP significantly improved bio-removal efficiency of sulfamethoxazole (95.5%) in four-antibiotic mixtures within 48 h. Tetracycline and oxytetracycline were completely bio-removed by AMC within 48 and 72 h, respectively, indicating that AMC accelerated sulfamethoxazole, tetracycline, and oxytetracycline bio-removals. Additionally, transformation pathways of each antibiotic by recombinant oxidases were proposed. Taken together, this work provides a new strategy to simultaneously remove antibiotic mixtures by AMC.


Subject(s)
Anti-Bacterial Agents , Oxytetracycline , Anti-Bacterial Agents/metabolism , Biotransformation , Laccase/metabolism , Microbial Consortia , Protein Sorting Signals , Sulfamethoxazole , Tetracycline
4.
Bioresour Technol ; 349: 126863, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35183721

ABSTRACT

The application of antibacterial lipopeptides is limited by high cost and low yield. Herein, the exogenous L-proline significantly improved lipopeptide production by Bacillus amyloliquefaciens HM618. A recombinant Corynebacterium glutamicum producing high levels of proline using genetically modifying proB and putA was used to establish consortium, to improve lipopeptide production of strain HM618. Compared to a pure culture, the levels of iturin A, fengycin, and surfactin in consortium reached 67.75, 39.32, and 37.25 mg L-1, respectively, an increase of 3.19-, 2.05-, and 1.63-fold over that produced by co-cultures of B. amyloliquefaciens and recombinant C. glutamicum with normal medium. Commercial amylase and recombinant Pichia pastoris with a heterologous amylase gene were used to hydrolyze kitchen waste. A three-strain consortium with recombinant P. pastoris and C. glutamicum increased the lipopeptide production of strain HM618 in medium containing KW. This work provides new strategies to improve lipopeptide production by B. amyloliquefaciens.


Subject(s)
Bacillus amyloliquefaciens , Corynebacterium glutamicum , Bacillus amyloliquefaciens/genetics , Coculture Techniques , Lipopeptides , Proline
5.
Sci Rep ; 11(1): 13941, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230568

ABSTRACT

Odorant-binding proteins (OBPs) are prevalent in the antennal transcriptomes of different orders of insects. Studies on OBPs have focused on their role in the insect chemosensory system, but knowledge of their functions in the insect testis is limited. We sequenced the transcriptomes of the Athetis dissimilis reproductive organs and analyzed the expression of AdisOBP genes in different tissues. We identified 23 OBPs in the testis and ovaries and 31 OBPs in antennal transcriptomes. The results of real-time quantitative PCR revealed that 23 of the 54 OBP genes were highly expressed in both female and male antennae, including three that exhibited male-biased expression and 15 that exhibited female-biased expression. A total of 24 OBPs were highly expressed in the testis of A. dissimilis, while expression of OBPs in the ovaries was very low. These findings highlight the functional diversity of OBPs in insects and can facilitate further studies on the OBPs in A. dissimilis and lepidopteran species.


Subject(s)
Arthropod Antennae/metabolism , Gene Expression Regulation , Genitalia/metabolism , Lepidoptera/genetics , Receptors, Odorant/genetics , Animals , Female , Gene Expression Profiling , Gene Ontology , Male , Molecular Sequence Annotation , Ovary/metabolism , Phylogeny , Receptors, Odorant/metabolism , Sequence Analysis, DNA , Testis/metabolism , Transcriptome/genetics
6.
Mol Biol Rep ; 48(4): 3127-3143, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33871783

ABSTRACT

Chemosensory receptors in the dendritic membrane of olfactory cells are critical for the molecular recognition and discrimination of odorants. Tropidothorax elegans is a major pest of agricultural, ornamental, and medicinal plants. However, very little is known about olfactory genes in T. elegans. The purpose of this study was to obtain chemosensory receptor genes by sequencing the antennal transcriptome of T. elegans using Illumina sequencing technology. We identified 153 candidate chemosensory receptors, including 121 olfactory receptors (including one olfactory receptor co-receptor), 10 ionotropic receptors (including one IR8a and one IR25a), and 22 gustatory receptors (GRs). TeleOR76, 104 and 112 displayed more highly expression level than TeleOrco. Other TeleGR genes were expressed at very low levels except TeleGR1 and 20. TeleIR76b was the most highly expressed among TeleIR genes. Our results provide valuable biological information for studies of the olfactory communication system of T. elegans.


Subject(s)
Arthropod Antennae/metabolism , Heteroptera , Receptors, Odorant , Animals , Gene Expression Profiling , Heteroptera/genetics , Heteroptera/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Receptors, Cell Surface , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Transcriptome
7.
J Ind Microbiol Biotechnol ; 47(6-7): 551-562, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32495197

ABSTRACT

Polymyxins are used as the last-line therapy against multidrug-resistant bacteria. However, their further clinical development needs to solve problems related to the presence of heterogeneous analogs, but there is still no platform or methods that can regulate the biosynthesis of polymyxin analogs. In this study, we present an approach to swap domains in the polymyxin gene cluster to regulate the production of different analogs. Following adenylation domain swapping, the proportion of polymyxin B1 increased from 41.36 to 52.90%, while that of B1-1 decreased from 18.25 to 3.09%. The ratio of polymyxin B1 and B3 following starter condensation domain swapping changed from 41.36 and 16.99 to 55.03 and 6.39%, respectively. The two domain-swapping strains produced 62.96% of polymyxin B1, 6.70% of B3 and 3.32% of B1-1. This study also revealed the presence of overflow fluxes between acetoin, 2,3-butanediol and polymyxin. To our best knowledge, this is the first report of engineering the polymyxin synthetase gene cluster in situ to regulate the relative proportions of polymyxin analogs. This research paves a way for regulating lipopeptide analogs and will facilitate the development of novel lipopeptide derivatives.


Subject(s)
Drug Resistance, Multiple, Bacterial , Paenibacillus polymyxa/enzymology , Peptide Synthases/chemistry , Peptide Synthases/genetics , Polymyxins/analogs & derivatives , Agar , Anti-Bacterial Agents , Culture Media , Fermentation , Lipopeptides , Metabolic Engineering , Paenibacillus polymyxa/genetics , Polymyxins/biosynthesis , Polymyxins/chemistry , Surface-Active Agents/chemistry
8.
Sci Rep ; 8(1): 7803, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29773848

ABSTRACT

Tropidothorax elegans Distant (Hemiptera: Lygaeidae) is an insect pest that inflicts damage to vegetables and flowering plants across China. The olfactory system regulates insect behavior, such as feeding, mating, oviposition and predator avoidance. Odorant-binding proteins (OBPs) and the chemosensory proteins (CSPs) are two groups of small soluble proteins that initiate olfactory signal transduction in insects. In this study, we generated antennal transcriptomes of male and female T. elegans, and identified 19 putative OBP (14 classic OBPs and five plus-C OBPs) and seven CSP genes. Through real-time quantitative PCR analysis, we found that 14 of the 19 OBP genes were highly expressed in the antennae of both adult females and males, and 3 OBP genes were expressed higher in the antennae of males than females. Some OBP genes were also highly expressed in the legs or wings. Three CSP genes were highly expressed in the antennae of both sexes, and TeleCSP7 showed higher expression in male antennae compare to females. Interestingly, one CSP gene, TeleCSP2, was expressed in all olfactory tissues. Our results provide molecular insights into further investigating of the olfactory system of an important plant pest, T. elegans.


Subject(s)
Hemiptera/metabolism , Insect Proteins/metabolism , Receptors, Odorant/metabolism , Animals , Arthropod Antennae/metabolism , Female , Genes, Insect , Hemiptera/genetics , Insect Proteins/analysis , Insect Proteins/chemistry , Male , Phylogeny , Receptors, Odorant/analysis , Receptors, Odorant/chemistry
9.
J Insect Sci ; 17(3)2017 May 01.
Article in English | MEDLINE | ID: mdl-28973577

ABSTRACT

Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex, causing significant crop losses in China during the last decade. Although knowledge of cryptic species composition and dynamics within B. tabaci complex is critical for developing sustainable pest management strategies, limited information is available on this pest in the Henan province of China. A systematic survey of the cryptic species composition and distribution of B. tabaci complex in different locations of Henan province was conducted in 2012. The results of RAPD-PCR and the gene for the mitochondrial cytochrome oxidase subunit-1 (mtCOI) based phylogenetic relationships established using Bayesian method indicated there were four known cryptic species MEAM1, MED, Asia II 3, Asia II 9 and a new cryptic species named China 6 in Henan province. In the survey, the invasive cryptic species MED and MEAM1 were found to be predominant with wide spread distribution across the surveyed regions. On the contrary, the indigenous B. tabaci cryptic species including Asia II 3, Asia II 9 and China 6 remained with low prevalence in some surveyed regions. Cryptic species MEAM1 and MED have not completely displaced the native B. tabaci in Henan province. This current study for the first time unifies our knowledge of the diversity and distribution of B. tabaci across Henan province of China.


Subject(s)
Hemiptera/classification , Animals , China , Female , Hemiptera/genetics , Introduced Species , Male , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...