Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Shellfish Immunol ; 151: 109720, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945413

ABSTRACT

Toll-like receptors (TLRs) represent a prominent category of pattern recognition receptors that have been extensively investigated for their pivotal role in combating pathogen incursions. Despite this, there has been a notable absence of comprehensive identification and exploration of the immune response associated with the TLR family genes in C. altivelis. This study successfully identified and named fourteen genes as Catlr1-1, Catlr1-2, Catlr2-1, Catlr2-2, Catlr3, Catlr5, Catlr7, Catlr8, Catlr9, Catlr13-1, Catlr13-2, Catlr18, Catlr21, and Catlr22. A series of bioinformatic analysis were performed, encompassing analysis of protein properties, examination of gene structures, evolutionary assessments, and prediction of protein tertiary structures. The expression patterns of Catlr genes were analyzed in five immune tissues: liver, spleen, kidney, gill, and intestine, in both healthy and bacterial stimulated-fish. The results showed that different tissue and different genes showed differed expression patterns after V. harveyi infection, indicating the involvement of all Catlr members in mounting immune responses following infection in various tissues. Additionally, histological evaluations of immune tissues unveiled varying levels of damage. In conclusion, this investigation into the TLR gene family offers novel information that contribute to a more profound comprehension of the immune response mechanisms in C. altivelis.


Subject(s)
Fish Diseases , Fish Proteins , Gene Expression Profiling , Phylogeny , Toll-Like Receptors , Vibrio , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/chemistry , Gene Expression Profiling/veterinary , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Toll-Like Receptors/chemistry , Fish Diseases/immunology , Vibrio/physiology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Immunity, Innate/genetics , Gene Expression Regulation/immunology , Multigene Family , Sequence Alignment/veterinary , Amino Acid Sequence
2.
Sci Data ; 11(1): 51, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195804

ABSTRACT

The humpback grouper (Cromileptes altivelis), a medium-sized coral reef teleost, is a naturally rare species distributed in the tropical waters of the Indian and Pacific Oceans. It has high market value, but artificial reproduction and breeding remain limited and need to be improved. Here, we assembled the genome with 1.08 Gb, with a contig N50 of 43.78 Mb. A total of 96.59% of the assembly anchored to 24 pseudochromosomes using Hi-C technology. It contained 24,442 protein-coding sequences, of which 99.3% were functionally annotated. The completeness of the assembly was estimated to be 97.3% using BUSCO. The phylogenomic analysis suggested that humpback grouper should be classified into the genus Epinephelus rather than Cromileptes. The comparative genomic analysis revealed that the gene families related to circadian entrainment were significantly expanded. The high-quality reference genome provides useful genomic tools for exploiting the genomic resource of humpback grouper and supports the functional genomic study of this species in the future.


Subject(s)
Bass , Genome , Animals , Chromosomes , Open Reading Frames
SELECTION OF CITATIONS
SEARCH DETAIL
...