Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(6): 3868-3874, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38417115

ABSTRACT

Selective aerobic oxidation of alcohols in batch and flow can be realized under light irradiation, utilizing disulfide as the photocatalyst, and a variety of primary and secondary alcohols were converted to the corresponding aldehydes or ketones in up to 99% yield and high selectivity. The reaction efficiency could be increased even further by combining a continuous-flow strategy. Detailed mechanistic studies have also been achieved to determine the role of oxygen and disulfides in this oxidation.

2.
ACS Appl Mater Interfaces ; 16(5): 6008-6024, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38282284

ABSTRACT

The synthesis of low-temperature poly(heptazine imide) (PHI) presents a significant challenge. In this context, we have developed a novel low-temperature synthesis strategy for PHI in this work. This strategy involves the introduction of Na+ ions, which etch and disrupt the conjugated structure of carbon nitride (CN) during assisted thermal condensation. This disruption leads to the partial decomposition of the heptazine ring structure, resulting in the formation of C≡N functionalities on the CN surface, which are enriched with hydroxyl groups and undergo cyano modification. The formation of heterojunctions between CN and ZnO, which facilitate charge transfer along an immobilization pathway, accelerated charge transfer processes and improved reactant adsorption as well as electron utilization efficiency. The resulting catalyst was employed for the room temperature, atmospheric pressure, and solvent-free photocatalytic selective oxidation of cumene (CM), achieving a cumene conversion rate of 28.7% and a remarkable selectivity of 92.0% toward the desired product, cumene hydroperoxide (CHP). Furthermore, this CHP induced oxidative reactions, as demonstrated by the successful oxidation of benzylamine to imine and the oxidation of sulfide to sulfoxide, both yielding high product yields. Additionally, the utilization of a continuous-flow device significantly reduces the reaction time required for these oxidation processes. This work not only introduces an innovative approach to environmentally friendly, sustainable, clean, and efficient PHI synthesis but also underscores the promising potential and advantages of carbon nitride-based photocatalysts in the realm of sustainable and green organic transformations.

SELECTION OF CITATIONS
SEARCH DETAIL
...