Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Immunol Cell Biol ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269338

ABSTRACT

Natural killer (NK) cells play a vital role in innate immunity and show great promise in cancer immunotherapy. Traditional sources of NK cells, such as the peripheral blood, are limited by availability and donor variability. In addition, in vitro expansion can lead to functional exhaustion and gene editing challenges. This study aimed to harness induced pluripotent stem cell (iPSC) technology to provide a consistent and scalable source of NK cells, overcoming the limitations of traditional sources and enhancing the potential for cancer immunotherapy applications. We developed human placental-derived iPSC lines using reprogramming techniques. Subsequently, an optimized two-step differentiation protocol was introduced to generate high-purity NK cells. Initially, iPSCs were differentiated into hematopoietic-like stem cells using spin-free embryoid bodies (EBs). Subsequently, the EBs were transferred to ultra-low attachment plates to induce NK cell differentiation. iPSC-derived NK (iNK) cells expressed common NK cell markers (NKp46, NKp30, NKp44, CD16 and eomesodermin) at both RNA and protein levels. iNK cells demonstrated significant resilience to cryopreservation and exhibited enhanced cytotoxicity. The incorporation of a chimeric antigen receptor (CAR) construct further augmented their cytotoxic potential. This study exemplifies the feasibility of generating iNK cells with high purity and enhanced functional capabilities, their improved resilience to cryopreservation and the potential to have augmented cytotoxicity through CAR expression. Our findings offer a promising pathway for the development of potential cellular immunotherapies, highlighting the critical role of iPSC technology in overcoming challenges associated with traditional NK cell sources.

2.
Biol Methods Protoc ; 9(1): bpae019, 2024.
Article in English | MEDLINE | ID: mdl-38605978

ABSTRACT

Organoid generation from pluripotent stem cells is a cutting-edge technique that has created new possibilities for modelling human organs in vitro, as well as opening avenues for regenerative medicine. Here, we present a protocol for generating skin organoids (SKOs) from human-induced pluripotent stem cells (hiPSCs) via direct embryoid body formation. This method provides a consistent start point for hiPSC differentiation, resulting in SKOs with complex skin architecture and appendages (e.g. hair follicles, sebaceous glands, etc.) across hiPSC lines from two different somatic sources.

3.
Small ; 20(16): e2304879, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38044307

ABSTRACT

The development of skin organs for studying developmental pathways, modeling diseases, or regenerative medicine purposes is a major endeavor in the field. Human induced pluripotent stem cells (hiPSCs) are successfully used to derive skin cells, but the field is still far from meeting the goal of creating skin containing appendages, such as hair follicles and sweat glands. Here, the goal is to generate skin organoids (SKOs) from human skin fibroblast or placental CD34+ cell-derived hiPSCs. With all three hiPSC lines, complex SKOs with stratified skin layers and pigmented hair follicles are generated with different efficacies. In addition, the hiPSC-derived SKOs develop sebaceous glands, touch-receptive Merkel cells, and more importantly eccrine sweat glands. Together, physiologically relevant skin organoids are developed by direct induction of embryoid body formation, along with simultaneous inactivation of transforming growth factor beta signaling, activation of fibroblast growth factor signaling, and inhibition of bone morphogenetic protein signaling pathways. The skin organoids created in this study can be used as valuable platforms for further research into human skin development, disease modeling, or reconstructive surgeries.


Subject(s)
Induced Pluripotent Stem Cells , Pregnancy , Humans , Female , Placenta , Skin , Hair Follicle/physiology , Organoids
4.
Trials ; 24(1): 346, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37217960

ABSTRACT

BACKGROUND: Hearing loss is the third leading global cause of disability and is associated with poorer quality of life. Hearing aids are often recommended for hearing loss; however, hearing aid uptake and use rates are perpetually low. Motivational interviewing (MI) is a patient-centered counseling aimed at addressing the desire in the patient to change their behavior. The aim of this study is to investigate the impact of one-on-one MI sessions on hearing aid use among new adult users. METHODS: A multi-center, prospective, randomized patient-blind controlled trial with a pre- and post-tests design. New hearing aid users ≥ 18 years of age will be recruited from Vancouver, Canada. They will be randomly assigned to a treatment or control group. The treatment group will attend a one-on-one MI session hosted by a practicing MI therapist in addition to standard in-person audiological care. The control group will receive standard in-person audiological care. Data is collected at baseline and at 1, 3, 6, and 12 months' follow-ups. The primary outcomes are data-logged hearing aid use hours and patient-reported outcomes as measured by the International Outcome Inventory for Hearing Aids questionnaire. Associations between intervention and hearing aid use hours and self-reported outcome measures will be assessed. DISCUSSION: This trial is designed to evaluate the efficacy of one-on-one MI in improving hearing aid use in new adult users in the short and long terms. Results will contribute to the evidence on whether MI counseling has an effect on hearing aid use and may guide future clinical practices. TRIAL REGISTRATION: ClinicalTrials.gov NCT04673565 . Registered on 17 December 2020.


Subject(s)
Deafness , Hearing Aids , Hearing Loss , Motivational Interviewing , Adult , Humans , Quality of Life , Prospective Studies , Hearing Loss/diagnosis , Hearing Loss/therapy , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
5.
Adv Sci (Weinh) ; 10(15): e2204741, 2023 05.
Article in English | MEDLINE | ID: mdl-36998105

ABSTRACT

Multicellular patterning of stem-cell-derived tissue models is commonly achieved via self-organizing activities triggered by exogenous morphogenetic stimuli. However, such tissue models are prone to stochastic behavior, limiting the reproducibility of cellular composition and forming non-physiological architectures. To enhance multicellular patterning in stem cell-derived tissues, a method for creating complex tissue microenvironments endowed with programmable multimodal mechano-chemical cues, including conjugated peptides, proteins, morphogens, and Young's moduli defined over a range of stiffnesses is developed. The ability of these cues to spatially guide tissue patterning processes, including mechanosensing and the biochemically driven differentiation of selected cell types, is demonstrated. By rationally designing niches, the authors engineered a bone-fat assembly from stromal mesenchyme cells and regionalized germ layer tissues from pluripotent stem cells. Through defined niche-material interactions, mechano-chemically microstructured niches enable the spatial programming of tissue patterning processes. Mechano-chemically microstructured cell niches thereby offer an entry point for enhancing the organization and composition of engineered tissues, potentiating structures that better recapitulate their native counterparts.


Subject(s)
Pluripotent Stem Cells , Tissue Engineering , Reproducibility of Results , Tissue Engineering/methods , Morphogenesis , Bone and Bones
6.
NPJ Regen Med ; 6(1): 75, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795316

ABSTRACT

The foetal brain is particularly vulnerable to the detrimental effects of foetal growth restriction (FGR) with subsequent abnormal neurodevelopment being common. There are no current treatments to protect the FGR newborn from lifelong neurological disorders. This study examines whether pure foetal mesenchymal stromal cells (MSC) and endothelial colony-forming cells (ECFC) from the human term placenta are neuroprotective through modulating neuroinflammation and supporting the brain vasculature. We determined that one dose of combined MSC-ECFCs (cECFC; 106 ECFC 106 MSC) on the first day of life to the newborn FGR piglet improved damaged vasculature, restored the neurovascular unit, reduced brain inflammation and improved adverse neuronal and white matter changes present in the FGR newborn piglet brain. These findings could not be reproduced using MSCs alone. These results demonstrate cECFC treatment exerts beneficial effects on multiple cellular components in the FGR brain and may act as a neuroprotectant.

7.
Elife ; 102021 02 08.
Article in English | MEDLINE | ID: mdl-33554859

ABSTRACT

Protein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labeling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cells (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal differentiation of NCCs and compromised craniofacial tissue patterning. Following NCC delamination, low level of TWIST1-CRM activity is instrumental to stabilize the early NCC signatures and migratory potential by repressing the neural stem cell programs. High level of TWIST1 module activity at later phases commits the cells to the ectomesenchyme. Our study further revealed the functional interdependency of TWIST1 and potential neurocristopathy factors in NCC development.


Shaping the head and face during development relies on a complex ballet of molecular signals that orchestrates the movement and specialization of various groups of cells. In animals with a backbone for example, neural crest cells (NCCs for short) can march long distances from the developing spine to become some of the tissues that form the skull and cartilage but also the pigment cells and nervous system. NCCs mature into specific cell types thanks to a complex array of factors which trigger a precise sequence of binary fate decisions at the right time and place. Amongst these factors, the protein TWIST1 can set up a cascade of genetic events that control how NCCs will ultimately form tissues in the head. To do so, the TWIST1 protein interacts with many other molecular actors, many of which are still unknown. To find some of these partners, Fan et al. studied TWIST1 in the NCCs of mice and cells grown in the lab. The experiments showed that TWIST1 interacted with CHD7, CHD8 and WHSC1, three proteins that help to switch genes on and off, and which contribute to NCCs moving across the head during development. Further work by Fan et al. then revealed that together, these molecular actors are critical for NCCs to form cells that will form facial bones and cartilage, as opposed to becoming neurons. This result helps to show that there is a trade-off between NCCs forming the face or being part of the nervous system. One in three babies born with a birth defect shows anomalies of the head and face: understanding the exact mechanisms by which NCCs contribute to these structures may help to better predict risks for parents, or to develop new approaches for treatment.


Subject(s)
Cell Differentiation , Chromatin/metabolism , Neural Crest/cytology , Neural Crest/metabolism , Twist-Related Protein 1/metabolism , Animals , Chromatin/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Mice , Neural Crest/embryology , Twist-Related Protein 1/genetics
8.
Mol Oncol ; 15(4): 1162-1179, 2021 04.
Article in English | MEDLINE | ID: mdl-33497018

ABSTRACT

Approximately 25% of human neuroblastoma is caused by amplification of the MYCN oncogene, which leads to overexpression of N-Myc oncoprotein. The survival rate for this patient subtype is <50%. Here, we show that N-Myc protein bound to the DEAD-box RNA helicase DDX21 gene promoter and upregulated DDX21 mRNA and protein expression. Genome-wide differential gene expression studies identified centrosomal protein CEP55 as one of the genes most dramatically downregulated after DDX21 knockdown in MYCN-amplified neuroblastoma cells. Knocking down DDX21 or CEP55 reduced neuroblastoma cell cytoskeleton stability and cell proliferation and all but abolished clonogenic capacity. Importantly, DDX21 knockdown initially induced tumor regression in neuroblastoma-bearing mice and suppressed tumor progression. In human neuroblastoma tissues, a high level of DDX21 expression correlated with a high level of N-Myc expression and with CEP55 expression, and independently predicted poor patient prognosis. Taken together, our data show that DDX21 induces CEP55 expression, MYCN-amplified neuroblastoma cell proliferation, and tumorigenesis, and that DDX21 and CEP55 are valid therapeutic targets for the treatment of MYCN-amplified neuroblastoma.


Subject(s)
Cell Cycle Proteins/genetics , DEAD-box RNA Helicases/genetics , Neuroblastoma/genetics , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred BALB C , Mice, Nude , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/pathology , Promoter Regions, Genetic
9.
J Subst Abuse Treat ; 118: 108102, 2020 11.
Article in English | MEDLINE | ID: mdl-32854983

ABSTRACT

The current coronavirus disease (COVID-19) pandemic has rapidly spread across the world. Individuals with stimulant use disorder are a vulnerable population, who are particularly at risk of negative outcomes during this pandemic due to several risk factors, including mental and physical comorbidities, weakened immune responses, high-risk behaviors, and barriers to healthcare access. Engaging patients with stimulant use disorder in regular treatment has become even more difficult during this pandemic, which has resulted in many cuts to addiction treatment programs. The most effective treatment options for stimulant use disorder are psychosocial interventions, which rely heavily on in-person interactions, posing an added challenge during physical distancing. In particular, contingency management (CM) is a behavioral therapy that utilizes tangible reinforcements to incentivize targeted behavior changes, and is an effective treatment intervention used for stimulant use disorder. This paper highlights the treatment challenges for individuals with stimulant use disorder and the importance of adapting CM programs during COVID-19. We present strategies for how CM can be adapted and its role expanded in a safe way during the COVID-19 pandemic to help prevent infection spread, stimulant use relapse, and worsened psychosocial consequences.


Subject(s)
Behavior Therapy/methods , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Substance-Related Disorders/therapy , COVID-19 , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/adverse effects , Coronavirus Infections/prevention & control , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Risk Factors , Substance-Related Disorders/epidemiology , Vulnerable Populations
10.
Mol Cell Biol ; 40(11)2020 05 14.
Article in English | MEDLINE | ID: mdl-32179550

ABSTRACT

The extensive array of basic helix-loop-helix (bHLH) transcription factors and their combinations as dimers underpin the diversity of molecular function required for cell type specification during embryogenesis. The bHLH factor TWIST1 plays pleiotropic roles during development. However, which combinations of TWIST1 dimers are involved and what impact each dimer imposes on the gene regulation network controlled by TWIST1 remain elusive. In this work, proteomic profiling of human TWIST1-expressing cell lines and transcriptome analysis of mouse cranial mesenchyme have revealed that TWIST1 homodimers and heterodimers with TCF3, TCF4, and TCF12 E-proteins are the predominant dimer combinations. Disease-causing mutations in TWIST1 can impact dimer formation or shift the balance of different types of TWIST1 dimers in the cell, which may underpin the defective differentiation of the craniofacial mesenchyme. Functional analyses of the loss and gain of TWIST1-E-protein dimer activity have revealed previously unappreciated roles in guiding lineage differentiation of embryonic stem cells: TWIST1-E-protein heterodimers activate the differentiation of mesoderm and neural crest cells, which is accompanied by the epithelial-to-mesenchymal transition. At the same time, TWIST1 homodimers maintain the stem cells in a progenitor state and block entry to the endoderm lineage.


Subject(s)
Cell Differentiation , Nuclear Proteins/metabolism , Protein Multimerization , Twist-Related Protein 1/metabolism , Animals , Cell Line , Dogs , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Developmental , Humans , Madin Darby Canine Kidney Cells , Mesoderm/cytology , Mesoderm/metabolism , Mice, Inbred C57BL , Mutation , Neural Crest/cytology , Neural Crest/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Transcriptome , Twist-Related Protein 1/chemistry , Twist-Related Protein 1/genetics
11.
Methods Mol Biol ; 1940: 77-95, 2019.
Article in English | MEDLINE | ID: mdl-30788819

ABSTRACT

Efficient and reliable methods for gene editing are critical for the generation of loss-of-gene function stem cells and genetically modified mice. Here, we outline the application of CRISPR-Cas9 technology for gene editing in mouse embryonic stem cells (mESCs) to generate knockout ESC chimeras for the fast-tracked analysis of gene function. Furthermore, we describe the application of gene editing directly to mouse epiblast stem cells (mEpiSCs) for modelling germ layer differentiation in vitro.


Subject(s)
Frameshift Mutation/genetics , Gene Editing/methods , Gene Knockout Techniques/methods , Germ Layers/cytology , Mouse Embryonic Stem Cells/cytology , Animals , CRISPR-Cas Systems/genetics , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mice , Plasmids/genetics , RNA, Guide, Kinetoplastida/genetics
12.
Nat Methods ; 16(1): 79-87, 2019 01.
Article in English | MEDLINE | ID: mdl-30573816

ABSTRACT

The utility of human pluripotent stem cell-derived kidney organoids relies implicitly on the robustness and transferability of the protocol. Here we analyze the sources of transcriptional variation in a specific kidney organoid protocol. Although individual organoids within a differentiation batch showed strong transcriptional correlation, we noted significant variation between experimental batches, particularly in genes associated with temporal maturation. Single-cell profiling revealed shifts in nephron patterning and proportions of component cells. Distinct induced pluripotent stem cell clones showed congruent transcriptional programs, with interexperimental and interclonal variation also strongly associated with nephron patterning. Epithelial cells isolated from organoids aligned with total organoids at the same day of differentiation, again implicating relative maturation as a confounder. This understanding of experimental variation facilitated an optimized analysis of organoid-based disease modeling, thereby increasing the utility of kidney organoids for personalized medicine and functional genomics.


Subject(s)
Kidney/metabolism , Organoids/metabolism , Cell Differentiation/genetics , Clone Cells , Epithelial Cells/cytology , Gene Expression Profiling , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Kidney/cytology , Kidney Diseases/genetics , Kidney Diseases/pathology , Models, Biological , Organoids/cytology , Reproducibility of Results , Single-Cell Analysis , Transcription, Genetic
13.
Genesis ; 56(9): e23246, 2018 09.
Article in English | MEDLINE | ID: mdl-30114334

ABSTRACT

Development of the embryonic head is driven by the activity of gene regulatory networks of transcription factors. LHX1 is a homeobox transcription factor that plays an essential role in the formation of the embryonic head. The loss of LHX1 function results in anterior truncation of the embryo caused by the disruption of morphogenetic movement of tissue precursors and the dysregulation of WNT signaling activity. Profiling the gene expression pattern in the Lhx1 mutant embryo revealed that tissues in anterior germ layers acquire posterior tissue characteristics, suggesting LHX1 activity is required for the allocation and patterning of head precursor tissues. Here, we used LHX1 as an entry point to delineate its transcriptional targets and interactors and construct a LHX1-anchored gene regulatory network. Using a gain-of-function approach, we identified genes that immediately respond to Lhx1 activation. Meta-analysis of the datasets of LHX1-responsive genes and genes expressed in the anterior tissues of mouse embryos at head-fold stage, in conjunction with published Xenopus embryonic LHX1 (Xlim1) ChIP-seq data, has pinpointed the putative transcriptional targets of LHX1 and an array of genetic determinants functioning together in the formation of the mouse embryonic head.


Subject(s)
Gene Regulatory Networks , Genes, Homeobox , Head/embryology , LIM-Homeodomain Proteins/metabolism , Transcription Factors/metabolism , Animals , Embryonic Stem Cells/metabolism , Gene Expression Profiling , Germ Cells/physiology , Transcription, Genetic , Xenopus laevis/embryology
14.
Methods Mol Biol ; 1330: 37-45, 2015.
Article in English | MEDLINE | ID: mdl-26621587

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) have provided novel insights into the etiology of disease and are set to transform regenerative medicine and drug screening over the next decade. The generation of human iPSCs free of a genetic footprint of the reprogramming process is crucial for the realization of these potential uses. Here we describe in detail the generation of human iPSC from control and disease-carrying individuals' fibroblasts using episomal plasmids.


Subject(s)
Cellular Reprogramming , Fibroblasts/cytology , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Plasmids/genetics , Cell Culture Techniques , Gene Expression , Humans , Polymerase Chain Reaction , Transfection/methods , Transgenes
15.
Hum Mol Genet ; 24(20): 5759-74, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26231220

ABSTRACT

Ataxia oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia. Recent evidence suggests that the protein defective in this syndrome, senataxin (SETX), functions in RNA processing to protect the integrity of the genome. To date, only patient-derived lymphoblastoid cells, fibroblasts and SETX knockdown cells were available to investigate AOA2. Recent disruption of the Setx gene in mice did not lead to neurobehavioral defects or neurodegeneration, making it difficult to study the etiology of AOA2. To develop a more relevant neuronal model to study neurodegeneration in AOA2, we derived neural progenitors from a patient with AOA2 and a control by induced pluripotent stem cell (iPSC) reprogramming of fibroblasts. AOA2 iPSC and neural progenitors exhibit increased levels of oxidative damage, DNA double-strand breaks, increased DNA damage-induced cell death and R-loop accumulation. Genome-wide expression and weighted gene co-expression network analysis in these neural progenitors identified both previously reported and novel affected genes and cellular pathways associated with senataxin dysfunction and the pathophysiology of AOA2, providing further insight into the role of senataxin in regulating gene expression on a genome-wide scale. These data show that iPSCs can be generated from patients with the autosomal recessive ataxia, AOA2, differentiated into neurons, and that both cell types recapitulate the AOA2 cellular phenotype. This represents a novel and appropriate model system to investigate neurodegeneration in this syndrome.


Subject(s)
Cellular Reprogramming , Disease Models, Animal , Mutation , Neural Stem Cells/metabolism , RNA Helicases/genetics , Spinocerebellar Ataxias/congenital , Animals , Apoptosis , DNA Breaks, Double-Stranded , DNA Helicases , Female , Fibroblasts/physiology , Humans , Induced Pluripotent Stem Cells/physiology , Mice , Multifunctional Enzymes , Neurons/physiology , Oxidative Stress , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/physiopathology
16.
Lab Chip ; 15(4): 1072-83, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25519528

ABSTRACT

We report the design and validation of a two-layered microfluidic device platform for single cell capture, culture and clonal expansion. Under manual injection of a cell suspension, deterministic trapping of hundreds to thousands of single cells (adherent and non-adherent) in a high throughput manner and at high trapping efficiency was achieved simply through the incorporation of a U-shaped hydrodynamic trap into the downstream wall of each micro-well. Post single cell trapping, we confirmed that these modified micro-wells permit the attachment, spreading and proliferation of the trapped single cells for multiple generations over extended periods of time (>7 days) under media perfusion. Due to its a) low cost, b) simplicity in fabrication and operation, c) high trapping efficiency, d) reliable and repeatable trapping mechanism, e) cell size selection and f) capability to provide perfused long-term culture and continuous time-lapse imaging, the microfluidic device developed and validated in this study is seen to have significant potential application in high-throughput single cell quality assessment and clonal analysis.


Subject(s)
Cell Separation/instrumentation , Clone Cells/cytology , Fibroblasts/cytology , High-Throughput Screening Assays/instrumentation , Lab-On-A-Chip Devices , Single-Cell Analysis/instrumentation , Skin/cytology , Cell Proliferation , Cells, Cultured , Computer Simulation , Equipment Design , Humans
17.
J Abnorm Psychol ; 123(4): 764-770, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25314266

ABSTRACT

Individuals with schizophrenia face significant challenges in daily functioning, and although social cognition predicts how well patients respond to these challenges, associated physiological mechanisms remain unspecified. The present study draws from polyvagal theory and tested the hypothesis that respiratory sinus arrhythmia (RSA), an established indicator of the capacity to self-regulate and adapt to environmental demands, combines with social cognition to predict functional outcome. Using data from 41 schizophrenia patients and 36 healthy comparison subjects, we replicated group differences in RSA and social cognition and also demonstrated that RSA and social cognition interact to predict how effectively patients manage work and independent living activities. Specifically, RSA did not enhance functional outcomes when social cognition was already strong, but higher levels of RSA enabled effective role functioning when social-cognitive performance was impaired. Jointly, RSA and social cognition accounted for 40% of the variance in outcome success, compared with 21% when evaluating social cognition alone. As polyvagal theory suggests, physiological flexibility and self-regulatory capacity may compensate for poorer social-cognitive skills among schizophrenia patients.


Subject(s)
Cognition/physiology , Interpersonal Relations , Respiratory Sinus Arrhythmia/physiology , Schizophrenia/physiopathology , Social Behavior , Vagus Nerve/physiopathology , Adult , Emotions/physiology , Employment/statistics & numerical data , Female , Heart Rate/physiology , Humans , Interviews as Topic , Male , Psychometrics , Schizophrenic Psychology , Social Environment , Social Skills
18.
Stem Cells Dev ; 23(13): 1515-23, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24555755

ABSTRACT

In this study we have reprogrammed dermal fibroblasts from an adult female horse into equine induced pluripotent stem cells (equiPSCs). These equiPSCs are dependent only on leukemia inhibitory factor (LIF), placing them in striking contrast to previously derived equiPSCs that have been shown to be co-dependent on both LIF and basic fibroblast growth factor (bFGF). These equiPSCs have a normal karyotype and have been maintained beyond 60 passages. They possess alkaline phosphatase activity and express eqNANOG, eqOCT4, and eqTERT mRNA. Immunocytochemistry confirmed that they produce NANOG, REX1, SSEA4, TRA1-60, and TRA1-81. While our equiPSCs are LIF dependent, bFGF co-stimulates their proliferation via the PI3K/AKT pathway. EquiPSCs lack expression of eqXIST and immunostaining for H3K27me3, suggesting that during reprogramming the inactive X chromosome has likely been reactivated to generate cells that have two active X chromosomes. EquiPSCs form embryoid bodies and in vitro teratomas that contain derivatives of all three germ layers. These LIF-dependent equiPSCs likely reflect a more naive state of pluripotency than equiPSCs that are co-dependent on both LIF and bFGF and so provide a novel resource for understanding pluripotency in the horse.


Subject(s)
Fibroblasts/physiology , Induced Pluripotent Stem Cells/physiology , Leukemia Inhibitory Factor/physiology , Skin/cytology , Animals , Biomarkers/metabolism , Cell Proliferation , Coculture Techniques , Feeder Cells , Female , Fibroblast Growth Factors/physiology , Gene Expression , Histones/metabolism , Horses , Transcription Factors/metabolism , X Chromosome/genetics
19.
Stem Cells ; 31(3): 467-78, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23225669

ABSTRACT

Down syndrome (DS) is the most frequent cause of human congenital mental retardation. Cognitive deficits in DS result from perturbations of normal cellular processes both during development and in adult tissues, but the mechanisms underlying DS etiology remain poorly understood. To assess the ability of induced pluripotent stem cells (iPSCs) to model DS phenotypes, as a prototypical complex human disease, we generated bona fide DS and wild-type (WT) nonviral iPSCs by episomal reprogramming. DS iPSCs selectively overexpressed chromosome 21 genes, consistent with gene dosage, which was associated with deregulation of thousands of genes throughout the genome. DS and WT iPSCs were neurally converted at >95% efficiency and had remarkably similar lineage potency, differentiation kinetics, proliferation, and axon extension at early time points. However, at later time points DS cultures showed a twofold bias toward glial lineages. Moreover, DS neural cultures were up to two times more sensitive to oxidative stress-induced apoptosis, and this could be prevented by the antioxidant N-acetylcysteine. Our results reveal a striking complexity in the genetic alterations caused by trisomy 21 that are likely to underlie DS developmental phenotypes, and indicate a central role for defective early glial development in establishing developmental defects in DS brains. Furthermore, oxidative stress sensitivity is likely to contribute to the accelerated neurodegeneration seen in DS, and we provide proof of concept for screening corrective therapeutics using DS iPSCs and their derivatives. Nonviral DS iPSCs can therefore model features of complex human disease in vitro and provide a renewable and ethically unencumbered discovery platform.


Subject(s)
Down Syndrome/etiology , Induced Pluripotent Stem Cells/physiology , Cell Differentiation/physiology , Down Syndrome/genetics , Down Syndrome/pathology , Female , Gene Dosage , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Neurites/pathology , Neurites/physiology , Neurogenesis , Neurons/pathology , Neurons/physiology , Transcriptome
20.
J Abnorm Psychol ; 119(1): 71-82, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20141244

ABSTRACT

Emotional and motivational dysfunction is fundamental to schizophrenia, and yet, the nature and scope of associated deficits are not well understood. This study assessed the integrity of emotional responding from the perspective of its underlying motivational systems during different phases of schizophrenia. Evaluative, somatic, and autonomic responses were measured during viewing of pictures categorized by emotional content, including threat, mutilation, contamination, illness, pollution, mild erotica, families, food, and nature. Participants were 13 patients at ultra high risk or prodromal for psychosis, 40 first-episode schizophrenia patients, 37 chronic schizophrenia patients, and 74 healthy comparison subjects. Irrespective of phase of illness, schizophrenia patients showed a robust and normal pattern of response across multiple systems, with differential engagement of the defensive and appetitive systems as a function of the motivational significance assigned to specific emotional contexts. Although the integrity of core motivational states also appeared to be intact in prodromal patients, a less consistent pattern of response was observed. As continuing efforts are made to identify emotional and motivational abnormalities in schizophrenia, identified deficits will likely be independent of a fundamental dysfunction in basic emotion and motivation response systems and involve integration with higher order processes.


Subject(s)
Affect , Motivation , Schizophrenia/diagnosis , Schizophrenic Psychology , Adolescent , Adult , Age Factors , Attention , Chronic Disease , Defense Mechanisms , Electromyography , Female , Heart Rate/physiology , Humans , Male , Middle Aged , Reflex, Startle , Severity of Illness Index , Visual Perception , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL