Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ovarian Res ; 16(1): 22, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694251

ABSTRACT

OBJECTIVE: To explore the association between ovulation induction drugs and ovarian cancer. DESIGN: Systematic review and meta-analysis. SETTING: Not applicable. PATIENT(S): Women without ovarian cancer who ever or never underwent ovarian induction. INTERVENTION(S): An extensive electronic search of the following databases was performed: PubMed, EMBASE, MEDLINE, Google Scholar, Cochrane Library and CNKI, from inception until January 2022. A total of 34 studies fulfilled our inclusion criteria and were included in the final meta-analysis. The odds ratio (OR) and random-effects model were used to estimate the pooled effects. The Newcastle-Ottawa Scale was used to assess the quality of included studies. Funnel plots and Egger tests were used to assess publication bias. MAIN OUTCOMES: New diagnosed borderline ovarian tumor (BOT) and invasive ovarian cancer (IOC) between ovulation induction (OI) group and control (CT) group considering fertility outcome, OI cycles and specific OI drugs. RESULTS: Primarily, there was no significant difference in the incidence of IOC and BOT between the OI and CT groups. Secondly, OI treatment did not increase the risk of IOC and BOT in the multiparous women, nor did it increase the risk of IOC in the nulliparous women. However, the risk of BOT appeared to be higher in nulliparous women treated with OI treatment. Thirdly, among women exposed to OI, the risk of IOC and BOT was higher in nulliparous women than in multiparous women. Fourthly, the risk of IOC did not increase with increasing OI cycles. Lastly, exposure to specific OI drugs also did not contribute to the risk of IOC and BOT. CONCLUSION: Overall, OI treatment did not increase the risk of IOC and BOT in most women, regardless of OI drug type and OI cycle. However, nulliparous women treated with OI showed a higher risk of ovarian cancer, necessitating their rigorous monitoring and ongoing follow-up.


Subject(s)
Infertility, Female , Ovarian Neoplasms , Female , Humans , Ovulation Induction , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/complications , Fertility , Fertility Agents, Female , Infertility, Female/drug therapy
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166602, 2023 02.
Article in English | MEDLINE | ID: mdl-36400338

ABSTRACT

Fibrosis, angiogenesis and chronic inflammation are the inherent characteristics of endometriosis (EMS). The cellular heterogeneity of ectopic and non-ectopic endometrium by single-cell RNA-sequencing (scRNA-seq)at secretory phase without the disturbance of hormone drugs hasn't been explored so far. In this study, scRNA-seq was adopted to explore the properties of ectopic endometrium (ECE), eutopic endometrium (EUE) and normal endometrium (NOE) at secretory phase. We found that (i) The proportion of myofibroblasts, pericytes, endothelial cells and macrophages in ECE overwhelms that of non-ectopic tissues (EUE and NOE), and Myofibro.C2 was the predominant myofibroblast sub-cluster in ECE. (ii) Myofibroblasts were mainly fibroblast-to-myofibroblast transdifferentiation (FMT) and pericytes were endothelial cell-dependent differentiation in ECE. (iii) Both myofibroblasts and pericytes had a low differentiation potential. (iv) The increased inflammation score, deceased NK cells, T cell exhaustion score and antigen-presenting capacity in ECE confirmed the inflammatory properties and immunodeficiency of ECE. These findings suggested that myofibroblasts, pericytes and macrophages may be the potential targets for anti-fibrotic, anti-angiogenic and anti-inflammatory therapy of EMS.


Subject(s)
Endometriosis , Female , Humans , Endometriosis/pathology , Endothelial Cells , Endometrium/pathology , Fibrosis , RNA
3.
Plant Physiol ; 187(1): 361-377, 2021 09 04.
Article in English | MEDLINE | ID: mdl-34618136

ABSTRACT

Photoperiod strictly controls vegetative and reproductive growth stages in soybean (Glycine max). A soybean GmRAV (Related to ABI3/VP1) transcription factor containing both AP2 and B3 domains was shown to be a key component of this process. We identified six polymorphisms in the GmRAV promoter that showed significant association with flowering time and maturity of soybean in one or multiple environments. Soybean varieties with minor polymorphism exhibited a longer growth period contributing to soybean adaptation to lower latitudes. The cis-acting element GT1CONSENSUS motif of the GmRAV promoter controlled the growth period, and the major allele in this motif shortened duration of late reproductive stages by reducing GmRAV expression levels. Three GmRAV-overexpressing (GmRAV-ox) transgenic lines displayed later flowering time and maturity, shorter height and fewer numbers of leaves compared with control plants, whereas transgenic inhibition of GmRAV expression resulted in earlier flowering time and maturity and increased plant height. Combining DNA affinity purification sequencing and RNA sequencing analyses revealed 154 putative target genes directly bound and transcriptionally regulated by GmRAV. Two GmRAV binding motifs [C(A/G)AACAA(G/T)A(C/T)A(G/T)] and [C(T/A)A(C)C(T/G)CTG] were identified, and acting downstream of E3E4, GmRAV repressed GmFT5a transcriptional activity through binding a CAACA motif, thereby delaying soybean growth and extending both vegetative and reproductive phases.


Subject(s)
Adaptation, Biological , Flowers/growth & development , Glycine max/genetics , Photoperiod , Plant Proteins/genetics , Transcription Factors/genetics , Flowers/genetics , Plant Proteins/metabolism , Glycine max/growth & development , Glycine max/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...