Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Bioorg Chem ; 148: 107491, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788365

ABSTRACT

As a consequence of somatosensory nervous system injury or disease, neuropathic pain is commonly associated with chemotherapies, known as chemotherapy-induced peripheral neuropathy (CIPN). However, the mechanisms underlying CIPN-induced proteome aggregation in neuronal cells remain elusive due to limited detection tools. Herein, we present series sensors for fluorescence imaging (AggStain) and proteomics analysis (AggLink) to visualize and capture aggregated proteome in CIPN neuronal cell model. The environment-sensitive AggStain imaging sensor selectively binds and detects protein aggregation with 12.3 fold fluorescence enhancement. Further, the covalent AggLink proteomic sensor captures cellular aggregated proteins and profiles their composition via LC-MS/MS analysis. This integrative sensor platform reveals the presence of proteome aggregation in CIPN cell model and highlights its potential for broader applications in assessing proteome stability under various cellular stress conditions.


Subject(s)
Antineoplastic Agents , Peripheral Nervous System Diseases , Proteome , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Humans , Proteome/analysis , Proteome/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Molecular Structure , Protein Aggregates/drug effects , Optical Imaging , Dose-Response Relationship, Drug , Proteomics , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology
2.
J Am Chem Soc ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512775

ABSTRACT

Despite their significant importance to numerous fields, the difficulties in direct and diverse synthesis of α-hydroxy-γ-lactams pose substantial obstacles to their practical applications. Here, we designed a nitrogen and TiO2 co-doped graphitic carbon-supported material with atomically dispersed cobalt sites (CoSA-N/NC-TiO2), which was successfully applied as a multifunctional catalyst to establish a general method for direct construction of α-hydroxy-γ-lactams from cheap and abundant nitro(hetero)arenes, aldehydes, and H2O with alkynoates. The striking features of operational simplicity, broad substrate and functionality compatibility (>100 examples), high step and atom efficiency, good selectivity, and exceptional catalyst reusability highlight the practicality of this new catalytic transformation. Mechanistic studies reveal that the active CoN4 species and the dopants exhibit a synergistic effect on the formation of key acid-masked nitrones; their subsequent nucleophilic addition to the alkynoates followed by successive reduction, alkenyl hydration, and intramolecular ester ammonolysis delivers the desired products. In this work, the concept of reduction interruption leading to new reaction route will open a door to further develop useful transformations by rational catalyst design.

3.
Anal Chem ; 96(12): 4978-4986, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38471057

ABSTRACT

Bioaccumulation of nanoplastic particles has drawn increasing attention regarding environmental sustainability and biosafety. How nanoplastic particles interact with the cellular milieu still remains elusive. Herein, we exemplify a general approach to profile the composition of a "protein corona" interacting with nanoparticles via the photocatalytic protein proximity labeling method. To enable photocatalytic proximity labeling of the proteome interacting with particles, iodine-substituted BODIPY (I-BODIPY) is selected as the photosensitizer and covalently conjugated onto amino-polystyrene nanoparticles as a model system. Next, selective proximity labeling of interacting proteins is demonstrated using I-BODIPY-labeled nanoplastic particles in both Escherichia coli lysate and live alpha mouse liver 12 cells. Mechanistic studies reveal that the covalent modifications of proteins by an aminoalkyne substrate are conducted via a reactive oxygen species photosensitization pathway. Further proteomic analysis uncovers that mitochondria-related proteins are intensively involved in the protein corona, indicating substantial interactions between nanoplastic particles and mitochondria. In addition, proteostasis network components are also identified, accompanied by consequent cellular proteome aggregation confirmed by fluorescence imaging. Together, this work exemplifies a general strategy to interrogate the composition of the protein corona of nanomaterials by endowing them with photooxidation properties to enable photocatalytic protein proximity labeling function.


Subject(s)
Boron Compounds , Nanoparticles , Protein Corona , Animals , Mice , Microplastics , Proteome , Proteomics , Polystyrenes
4.
Cardiology ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38437799

ABSTRACT

INTRODUCTION: Amyloidosis caused by TTR mutations (ATTRv) is a rare inherited and autosomal dominant disease. More than 150 mutants of TTR have been reported, whereas some of them remain to be investigated. METHODS: A 52-year-old male presented with heart failure and clinically diagnosed ATTR cardiac amyloidosis (ATTR-CA) was recruited. Whole exome sequencing (WES) was performed. Biochemical and biophysical experiments characterized protein stability using urea-mediated tryptophan fluorescence. Drug response was analyzed by fibril formation assay. Finally, tetramer TTR concentration in patient' serum sample was measured by ultra-performance liquid chromatography (UPLC). RESULTS: For the proband, whole exome sequencing revealed a mutation (c.200G>T; p.Gly67Val and referred to as G47V) in TTR gene. Biochemical and biophysical kinetics study showed that the thermodynamic stability of G47V-TTR (Cm = 2.4 M) was significantly lower than that of WT-TTR (Cm = 3.4 M) and comparable to that of L55P-TTR (Cm = 2.3 M), an early age-of-onset mutation. G47V:WT-TTR heterozygous tetramers kinetic stability (t1/2 = 1.4 h) was further compromised compared to that of the homozygous G47V-TTR (t1/2 = 3.1 h). Among three small molecule stabilizers, AG10 exhibited the best inhibition of the fibrillation of G47V-TTR homozygous protein. Using a UPLC assay, nearly 40% of TTR in this patient was calculated to be non-tetrameric. CONCLUSION: In this work, we reported a patient presented early onset of clinically typical ATTR-CM due to G47V-TTR mutation. Our work not only for the first time characterized the biochemical properties of G47V-TTR mutation, but also provided hints for the pathogenicity of this mutation.

5.
Ann Clin Transl Neurol ; 11(5): 1184-1196, 2024 May.
Article in English | MEDLINE | ID: mdl-38425144

ABSTRACT

OBJECTIVE: Neuromyelitis optica (NMO) was a serious autoimmune inflammatory condition affecting the central nervous system. Currently, there was a lack of diagnostic biomarkers for AQP4-IgG-negative NMO patients. METHODS: A comparative proteomic analysis was conducted on the CSF of 10 patients with NMO and 10 patients with non-inflammatory neurological disorders (NND) using tandem mass tagging technology. Differentially expressed proteins (DEPs) were analyzed using bioinformatic methods. The candidate proteins were then validated through ELISAs in a subsequent cohort of 160 samples, consisting of paired CSF and plasma samples from 50 NMO patients, CSF samples from 30 NND patients, and plasma samples from 30 healthy individuals. RESULTS: We identified 389 proteins via proteomics, screening 79 DEPs. NCAM1, SST and AHSG were selected as candidate molecules for further validation. Compared to NND patients, there were decreased levels of AHSG in CSF and increased levels of NCAM1 and SST in NMO patients. The ELISA results revealed significantly higher levels of AHSG, SST and NCAM1 in the CSF of the NMO group compared to the NND group. Similarly, the serum levels of these three proteins were also higher in the NMO group compared to the healthy control group. It was found that serum NCAM1 levels significantly decreased in patients with non-relapsed NMO compared to patients with relapsed NMO and CSF NCAM1 level increased in patients with bilateral NMO compared to patients with unilateral NMO. Furthermore, CSF SST levels increased in AQP4 antibody-positive NMO patients compared to AQP4 antibody-negative patients. INTERPRETATION: CSF NCAM1, serum NCAM1 and serum SST may serve as potential biomarkers for NMO patients and aid in the diagnosis of AQP4 antibody-negative NMO patients.


Subject(s)
Biomarkers , Neuromyelitis Optica , Proteomics , Humans , Neuromyelitis Optica/blood , Neuromyelitis Optica/cerebrospinal fluid , Neuromyelitis Optica/diagnosis , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Female , Adult , Proteomics/methods , Male , Middle Aged , CD56 Antigen/blood , Aquaporin 4/immunology , Aquaporin 4/blood
6.
Chin Med J (Engl) ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38291587

ABSTRACT

BACKGROUND: Hepatitis B poses a heavy burden for children in China, however, the national studies on the distributional characteristics and health care costs of children with severe hepatitis B is still lacking. This study aimed to analyze the disease characteristics, health economic effects, and medical cost for children with severe hepatitis B in China. METHODS: Based on patient information in the Hospital Quality Monitoring System, cases with severe hepatitis B were divided into four groups according to age, and the etiology and symptoms of each group were quantified. The cost of hospitalization was calculated for cases with different disease processes, and severity of disease. The spatial aggregation of cases and the relationship with health economic factors were analyzed by Moran's I  analysis. RESULTS: The total number of children discharged with hepatitis B from January 2016 to April 2022 was 1603, with an average age of 10.5 years. Liver failure cases accounted for 43.48% (697/1603,) of total cases and cirrhosis cases accounted for 11.23% (180/1603,). According to the grouping of disease progression, there were 1292 cases without associated complications, and the median hospitalization cost was $818.12. According to the spatial analysis, the aggregation of cases was statistically significant at the prefectural and provincial levels in 2019, 2020, and 2021 (all P <0.05). The number of severe cases was negatively correlated with gross domestic product (GDP, Moran's I <0) and percentage of urban population (Moran's I <0), and positively correlated with the number of pediatric beds per million population (Moran's I >0). CONCLUSION: The number of severe hepatitis B cases is low in areas with high GDP levels and high urban population ratios, and health care costs have been declining over the years.

7.
Chemistry ; 30(24): e202304373, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38282527

ABSTRACT

The in-depth study on reduction-specified coupling reactions of the nitroarenes by heterogeneous cobalt catalysis opens a door for diversified syntheses of functional N-containing molecules. Guided by the structure-function relationship of heterogeneous materials, rational design of nano-catalysts can effectively regulate the routes of organic reactions. Precise transformation of the intermediates generated during the nitroarene reduction with a suitable nano-catalyst is a promising way to develop new tandem reactions, and to synthesize structurally novel compounds that are of difficult access with the conventional approaches.

8.
ESC Heart Fail ; 11(1): 112-125, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37827496

ABSTRACT

AIMS: We conducted a presentation on an 84-year-old male patient who has been diagnosed with TTRA81V (p. TTRA101V) hereditary transthyretin cardiac amyloidosis (hATTR-CM). In order to establish its pathogenicity, we extensively investigated the biochemical and biophysical properties of the condition. METHODS AND RESULTS: Transthyretin amyloid cardiomyopathy (ATTR-CM) is an increasingly acknowledged progressive infiltrative cardiomyopathy that leads to heart failure and potentially fatal arrhythmias. Gaining a comprehensive understanding of the biochemical and biophysical characteristics of genetically mutated TTR proteins serves as the fundamental cornerstone for delivering precise medical care to individuals affected by ATTR. Laboratory assessments indicated a brain natriuretic peptide of 200.12 ng/L (normal range: 0-100 ng/L) and high-sensitivity cardiac troponin I of 0.189 µg/L (normal range: 0-0.1 µg/L). Echocardiography identified left atrial enlargement, symmetrical left ventricular hypertrophy (16 mm septal and 16 mm posterior wall), and a left ventricular ejection fraction of 56%. Cardiac-enhanced magnetic resonance imaging revealed subendocardial late gadolinium enhancement. Tc-99m-PYP nuclear scintigraphy confirmed grade 3 myocardial uptake, showing an increased heart-to-contralateral ratio (H/CL = 2.33). Genetic testing revealed a heterozygous missense mutation in the TTR gene (c.302C>T), resulting in an alanine-to-valine residue change (p. Ala81Val, following the first 20 residues of signal sequence nomenclature). Biochemical analysis of this variant displayed compromised kinetic stability in both the TTRA81V:WT (wild-type) heterozygote protein (half-life, t1/2  = 21 h) and the TTRA81V homozygote protein (t1/2  = 17.5 h). The kinetic stability fell between that of the TTRWT (t1/2  = 42 h) and the early-onset TTRL55P mutation (t1/2  = 4.4 h), indicating the patient's late-onset condition. Kinetic stabilizers (Tafamidis, Diflunisal, and AG10) all exhibited the capacity to inhibit TTRA81V acid- and mechanical force-induced fibril formation, albeit less effectively than with TTRWT. Chromatographic assessment of the patient's serum TTR tetramers indicated a slightly lower concentration (3.0 µM) before oral administration of Tafamidis compared with the normal range (3.6-7.2 µM). CONCLUSIONS: We identified a patient with hATTR-CM who possesses a rare TTRA81V mutation solely associated with cardiac complications. The slightly reduced kinetic stability of this mutation indicates its late-onset nature and contributes to the gradual progression of the disease.


Subject(s)
Amyloid Neuropathies, Familial , Cardiomyopathies , Male , Humans , Aged, 80 and over , Prealbumin/genetics , Contrast Media , Stroke Volume , Gadolinium , Ventricular Function, Left , Amyloid Neuropathies, Familial/diagnosis , Amyloid Neuropathies, Familial/genetics , Amyloid Neuropathies, Familial/complications , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Cardiomyopathies/complications , Mutation
9.
Clin Chim Acta ; 553: 117734, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38128818

ABSTRACT

BACKGROUND: Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) is a promising stroke biomarker. However, a large study of human serum ASC has not yet to be reported; additionally, the diagnostic value of prehospital concentration and practicality of ASC remains unknown. METHODS: We recruited 774 Chinese stroke patients, including 523 with ischemic stroke (IS) and 251 with hemorrhagic stroke (HS) within 14 days following symptom onset in the emergency department, alongside 481 healthy individuals and 64 cognitive impairment patients as controls. Serum ASC concentrations were determined using automated chemiluminescence immunoassay, exploring the relationship between serum ASC concentration and subtypes, severity, and sampling timepoints of stroke. RESULTS: ASC concentrations were significantly higher in stroke patients compared with all controls (P < 0.001). HS patients had greater ASC concentrations than IS patients (P < 0.05). With increasing ASC concentration, the proportion of severe cases increased. The area under the receiver operating characteristic curve (AUC) for differentiating between healthy individuals and stroke patients in the hyperacute phase was 0.78; this markedly improved (0.90) when considering samples from healthy individuals and patients with subarachnoid hemorrhage (SAH) ≤ 3  h from last-known-well (LKW). CONCLUSIONS: Serum ASC is a valuable biomarker for stroke differentiation and aids in the clinical diagnosis of stroke severity and subtypes.


Subject(s)
CARD Signaling Adaptor Proteins , Stroke , Humans , Apoptosis , Biomarkers , Caspases , Stroke/diagnosis
10.
Front Med ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991709

ABSTRACT

This cohort study was performed to explore the influence of intensive care unit (ICU) quality on in-hospital mortality of veno-venous (V-V) extracorporeal membrane oxygenation (ECMO)-supported patients in China. The study involved all V-V ECMO-supported patients in 318 of 1700 tertiary hospitals from 2017 to 2019, using data from the National Clinical Improvement System and China National Critical Care Quality Control Center. ICU quality was assessed by quality control indicators and capacity parameters. Among the 2563 V-V ECMO-supported patients in 318 hospitals, a significant correlation was found between ECMO-related complications and prognosis. The reintubation rate within 48 hours after extubation and the total ICU mortality rate were independent risk factors for higher in-hospital mortality of V-V ECMO-supported patients (cutoff: 1.5% and 7.0%; 95% confidence interval: 1.05-1.48 and 1.04-1.45; odds ratios: 1.25 and 1.23; P = 0.012 and P = 0.015, respectively). Meanwhile, the V-V ECMO center volume was a protective factor (cutoff of ≥ 50 cases within the 3-year study period; 95% confidence interval: 0.57-0.83, odds ratio: 0.69, P = 0.0001). The subgroup analysis of 864 patients in 11 high-volume centers further strengthened these findings. Thus, ICU quality may play an important role in improving the prognosis of V-V ECMO-supported patients.

11.
Eur J Med Res ; 28(1): 396, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794524

ABSTRACT

AIMS: To evaluate the effect of antibiotic prophylaxis(AP) in the prognosis of Post-neurosurgical meningitis(PNM) patients. METHODS: A cohort analysis was performed using the clinical database in Beijing Tiantan Hospital and Capital Medical University. Data were collected on patients with the diagnosis of PNM (n = 3931) during 2012.01 to 2022.04. The microbial distribution, types of AP, and 42 and 90 days survival analysis of AP patients were evaluated using probable statistical methods. Independent risk factors for mortality were established by constructing a logistic regression analysis. RESULT: A total of 1,190 patients were included in this study, Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococcus aureus occupied the highest proportion. Of them, 929 cases received AP, cefuroxime and ceftriaxone are the most frequent used antibiotics. In addition, We found that PNM patients without AP significantly increased the 42 days and 90 days all-cause mortality rates. The use of different levels of AP did not improve patient outcomes, and ICU admission and assisted mechanical ventilation (AMV) were identified as independent mortality risk factors for PNM patient received AP. CONCLUSIONS: AP plays an important role in the prognosis of PNM patients and has a significant function in improving prognosis. The prevention of PNM with antibiotics prior to neurosurgery should be emphasized in clinical practice, and appropriate selection of antibiotics is necessary to prevent the occurrence of infection and inhibit the emergence of antibiotic-resistant bacteria.


Subject(s)
Antibiotic Prophylaxis , Meningitis , Humans , Antibiotic Prophylaxis/adverse effects , Antibiotic Prophylaxis/methods , Anti-Bacterial Agents/therapeutic use , Meningitis/chemically induced , Meningitis/drug therapy , Ceftriaxone/therapeutic use , Prognosis , Retrospective Studies
12.
Anal Chim Acta ; 1278: 341704, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37709448

ABSTRACT

Covalent sensors to detect and capture aggregated proteome in stressed cells are rare. Herein, we construct a series of covalent fluorogenic sensors for aggregated proteins by structurally modulating GFP chromophore and arming it with an epoxide warhead. Among them, P2 probe selectively modifies aggregated proteins over folded ones and turns on fluorescence as evidenced by biochemical and mass spectrometry results. The coverage of this epoxide-based covalent chemistry is demonstrated using different types of aggregated proteins. Finally, the covalent fluorescent sensor P2 allows for direct visualization and capture of aggregated proteome in stressed cardiomyocytes and cardiac tissue samples from a cardio-oncology mouse model. The epoxide-based covalent sensor developed herein may become useful for future chemical proteomics analysis of aggregated proteins to dissect the mechanism underlying cardio-oncology.


Subject(s)
Neoplasms , Proteome , Animals , Mice , Gas Chromatography-Mass Spectrometry , Heart , Epoxy Compounds
13.
Nanoscale ; 15(37): 15415-15426, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37702995

ABSTRACT

Selective catalysis has always been an essential process for manufacturing various fine chemicals, such as food additives, pharmaceuticals and perfumes. Practically, pure target products are difficult to obtain even after complex purification procedures during industrial production. The development of a cost-effective, highly chemoselective and long-life catalyst may be an attractive solution, but such a catalyst is elusive. Herein, a novel class of amphiphilic N-doped carbon (NC), featuring graphitic carbon (GC) and highly dispersed Cu@Co NPs, was fabricated via simple calcination of a Cu2+-doped bimetallic metal-organic framework (MOF) precusor directly. Compared with monometallic Co@GC/NC, the side reaction of CO bond hydrogenation is obviously restrained, and thus, pure target product can be systematically obtained by Cu@Co@GC/NC, highlighting the high selectivity of Cu. More importantly, an amphiphilic characteristic in Cu@Co@GC/NC is a significant knob to integrate organic substrates with water very well. This amphiphilic material shows great potential as a field-deployable pathway for dispersible metal catalysts in organic systems.

14.
Front Neurol ; 14: 1187824, 2023.
Article in English | MEDLINE | ID: mdl-37771453

ABSTRACT

Objectives: To analyze the differences in laboratory data between patients with myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD), multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD). Methods: The study included 26 MOGAD patients who visited Beijing Tiantan Hospital from 2018 to 2021. MS and NMOSD patients who visited the clinic during the same period were selected as controls. Relevant indicators were compared between the MOGAD group and the MS/NMOSD groups, and the diagnostic performance of meaningful markers was assessed. Results: The MOGAD group showed a slight female preponderance of 57.7%, with an average onset age of 29.8 years. The absolute and relative counts of neutrophils were higher in the MOGAD group than in the MS group, while the proportion of lymphocytes was lower. The cerebrospinal fluid (CSF) IgG level, IgG index, 24-h IgG synthesis rate, and positive rate of oligoclonal bands (OCB) were lower in MOGAD patients than in the MS group. The area under ROC curve (AUC) was 0.939 when combining the relative lymphocyte count and IgG index. Compared to the NMOSD group, the MOGAD group had higher levels of serum complement C4 and lower levels of serum IgG. The AUC of serum C4 combined with FT4 was 0.783. Conclusion: Statistically significant markers were observed in the laboratory data of MOGAD patients compared to MS/NMOSD patients. The relative lymphocyte count combined with IgG index had excellent diagnostic efficacy for MOGAD and MS, while serum C4 combined with FT4 had better diagnostic efficacy for MOGAD and NMOSD.

15.
Infect Drug Resist ; 16: 6285-6295, 2023.
Article in English | MEDLINE | ID: mdl-37771842

ABSTRACT

Background: To investigate the factors associated with follow-up CSF cultures (FUCCs) in post-neurosurgical patients with gram-negative bacterial meningitis/encephalitis and the effect of FUCCs on treatment management and patient outcomes. Methods: This single-centered retrospective cohort study enrolled post-neurosurgical patients with gram-negative bacterial meningitis/encephalitis at a tertiary-care university hospital between 2012 and 2022. The risk factors for 28-day mortality were evaluated using multivariate Cox analysis. FUCC-related risk factors were also analyzed. Results: Among the 844 enrolled patients, 504 (59.7%) underwent FUCC, and FUCC was found to be associated with lower rates of both all-cause (hazard ratio (HR) 0.391; 95% confidence interval (CI), 0.235-0.651; p<0.001) and attributable mortality (HR 0.463; 95% CI, 0.239-0.897; p=0.023) in Post-neurosurgical patients diagnosed with Gram-negative bacterial meningitis/encephalitis. Moreover, the results of the study underscored that patients with persistent gram-negative bacterial meningitis/encephalitis had a lower all-cause/attributable short-term survival rate according to 28-day mortality Kaplan-Meier analysis (P=0.001/0.006). Conclusion: Performing FUCC has been demonstrated to lower mortality rates in Post-neurosurgical patients suffering from Gram-negative bacterial meningitis/encephalitis. The higher mortality rate observed in patients with persistent gram-negative bacterial meningitis/encephalitis suggests that performing FUCC is a crucial component of proper patient care and management, and is therefore recommended for use by clinicians as a standard practice. This finding underscores the significance of consistent implementation of FUCC in the management and prognosis of patients with Post-neurosurgical infections.

16.
J Mater Chem B ; 11(32): 7654-7662, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37464917

ABSTRACT

Protein misfolding and aggregation involve complex cellular processes with clinical implications in various diseases. However, the detection of aggregated proteomes without defined 3-D structures in a complex biological milieu is challenging. This study utilizes chromone scaffold-based environment-sensitive fluorophores P1 and P2 to detect misfolded and aggregated proteome in stressed liver cells and the liver tissues diseased patients. The reported crystallization induced emission probes (P1 and P2) exhibit both polarity and viscosity sensitivity, with emission intensity and wavelength linearly correlated to viscosity and polarity. Meanwhile, P1 and P2 selectively and generally fluoresce upon binding to various aggregated proteins. In hepatic cells, P2 outperforms P1 in detecting stress-induced global proteome aggregation. In mouse liver tissue upon drug-induced injury, the fluorescence intensity of P2 correlated with the severity of liver injury, serving as an earlier indicator for liver stress prior to ALT/AST increase. The quantification of emission wavelength reveals lower micro-environmental polarity in liver-injury tissue. In patient-derived tissues with hepatic cancer and cirrhosis, P1 and P2 also report on the presence of aggregated proteome. Together, the reported solvatochromic proteome aggregation sensors can detect hepatic proteome aggregation and analyze its local polarity in cultured cell lines, animal model tissues, and human clinical samples.


Subject(s)
Liver Neoplasms , Proteome , Mice , Animals , Humans
17.
J Am Chem Soc ; 145(31): 17329-17336, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37418675

ABSTRACT

Despite the extensive applications, selective and diverse access to N,N'-diarylethane-1,2-diamines remains, to date, a challenge. Here, by developing a bifunctional cobalt single-atom catalyst (CoSA-N/NC), we present a general method for direct synthesis of such compounds via selective reductive coupling of cheap and abundant nitroarenes and formaldehyde, featuring good substrate and functionality compatibility, an easily accessible base metal catalyst with excellent reusability, and high step and atom efficiency. Mechanistic studies reveal that the N-anchored cobalt single atoms (CoN4) serve as the catalytically active sites for the reduction processes, the N-doped carbon support enriches the HCHO to timely trap the in situ formed hydroxyamines and affords the requisite nitrones under weak alkaline conditions, and the subsequent inverse electron demand 1,3-dipolar cycloaddition of the nitrones and imines followed by hydrodeoxygenation of the cycloadducts furnishes the products. In this work, the concept of catalyst-controlled nitroarene reduction to in situ create specific building blocks is anticipated to develop more useful chemical transformations.

18.
Plant Physiol ; 192(4): 3170-3188, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37073508

ABSTRACT

Heterotrimeric GTP-binding proteins (G proteins) are a group of regulators essential for signal transmission into cells. Regulator of G protein signaling 1 (AtRGS1) possesses intrinsic GTPase-accelerating protein (GAP) activity and could suppress G protein and glucose signal transduction in Arabidopsis (Arabidopsis thaliana). However, how AtRGS1 activity is regulated is poorly understood. Here, we identified a knockout mutant of oxysterol binding protein-related protein 2A, orp2a-1, which exhibits similar phenotypes to the arabidopsis g-protein beta 1-2 (agb1-2) mutant. Transgenic lines overexpressing ORP2A displayed short hypocotyls, a hypersensitive response to sugar, and lower intracellular AtRGS1 levels than the control. Consistently, ORP2A interacted with AtRGS1 in vitro and in vivo. Tissue-specific expression of 2 ORP2A alternative splicing isoforms implied functions in controlling organ size and shape. Bioinformatic data and phenotypes of orp2a-1, agb1-2, and the orp2a-1 agb1-2 double mutant revealed the genetic interactions between ORP2A and Gß in the regulation of G protein signaling and sugar response. Both alternative protein isoforms of ORP2A localized in the endoplasmic reticulum (ER), plasma membrane (PM), and ER-PM contact sites and interacted with vesicle-associated membrane protein-associated protein 27-1 (VAP27-1) in vivo and in vitro through their two phenylalanines in an acidic track-like motif. ORP2A also displayed differential phosphatidyl phosphoinositide binding activity mediated by the pleckstrin homology domain in vitro. Taken together, the Arabidopsis membrane protein ORP2A interacts with AtRGS1 and VAP27-1 to positively regulate G protein and sugar signaling by facilitating AtRGS1 degradation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , GTP-Binding Protein beta Subunits , Heterotrimeric GTP-Binding Proteins , RGS Proteins , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , RGS Proteins/genetics , RGS Proteins/chemistry , RGS Proteins/metabolism , Glucose/metabolism , Carrier Proteins/metabolism , Signal Transduction , Heterotrimeric GTP-Binding Proteins/metabolism , Lipids , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism
19.
J Neuroimmunol ; 377: 578068, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36948094

ABSTRACT

Neuropathic pain seriously affects people's life, but its mechanism is not clear. Interleukin-17 (IL-17) is a proinflammation cytokine and involved in pain regulation. Our previous study found that IL-17 markedly enhanced the excitatory activity of spinal dorsal neurons in mice spinal slices. The present study attempts to explore if IL-17 contributes to neuropathic pain and spinal synapse plasticity. A model of spared nerve injury (SNI) was established in C57BL/6 J mice and IL-17a mutant mice. The pain-like behaviors was tested by von Frey test and dynamic mechanical stimuli, and the expression of IL-17 and its receptor, IL-17RA, was detected by immunohistochemical staining. C-fiber evoked field potentials were recorded in vivo. In the spinal dorsal horn, IL-17 predominantly expressed in the superficial spinal astrocytes and IL-17RA expressed mostly in neurons and slightly in astrocytes. The SNI-induced static and dynamic allodynia was significantly prevented by pretreatment of neutralizing IL-17 antibody (intrathecal injection, 2 µg/10 µL) and attenuated in IL-17a mutant mice. Post-treatment of IL-17 neutralizing antibody also partially relieved the established mechanical allodynia. Moreover, spinal long-term potentiation (LTP) of C-fiber evoked field potentials, a substrate for central sensitization, was suppressed by IL-17 neutralizing antibody. Intrathecal injection of IL-17 recombinant protein (0.2 µg/10 µL) mimicked the mechanical allodynia and facilitated the spinal LTP. These data implied that IL-17 in the spinal cord played a crucial role in neuropathic pain and central sensitization.


Subject(s)
Interleukin-17 , Neuralgia , Rats , Mice , Animals , Hyperalgesia/metabolism , Rats, Sprague-Dawley , Mice, Inbred C57BL , Neuralgia/metabolism , Spinal Cord/metabolism , Synapses/metabolism
20.
Angew Chem Int Ed Engl ; 62(22): e202303007, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36946861

ABSTRACT

Due to the generation of multiple intermediates during the nitroarene reduction, precise interception of single one to develop tandem reactions involving both C-C and C-N bond formations still remains a significant challenge. Herein, the relay catalysis of a supported bifunctional cobalt catalyst with l-proline has been successfully applied to establish a bran-new reductive annulation reaction of nitroarenes and formaldehyde, which enables direct and diverse construction of both symmetrical and unsymmetrical 1,3-diaryl imidazolines. It proceeds with operational simplicity, good substrate and functionality compatibility, and excellent step and atom-efficiency. Mechanistic studies reveal that the Co-catalyst exhibits a synergistic effect on the formation of key N-hydroxy imine, and the l-proline subsequently facilitates the key C-C bond formation. The current work opens a door to develop useful transformations with nitroarenes by reduction-interrupted strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...