Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37763918

ABSTRACT

In capacitive microelectromechanical system (MEMS) devices, the application of dielectric materials causes long-term charging problems in the dielectric layers or substrates, which especially affect the repeatability and stability of high-performance devices. Due to the difficulties of observation and characterization of charge accumulation, an accurate characterization method is needed to study the effect of charge and propose suppression methods. In this paper, we analyze the influence of charge accumulation on the MSRG and propose a characterization method for charge accumulation based on stiffness variation. Experiments are carried out to characterize the charge accumulation in MSRG, and the effect of temperature on the process is also investigated. In the experiment, the charge accumulation is characterized accurately by the variation of the frequency split and stiffness axes. Furthermore, the acceleration of the charge accumulation is observed at high temperatures, as is the higher additional voltage from the charge accumulation.

2.
Microsyst Nanoeng ; 8: 17, 2022.
Article in English | MEDLINE | ID: mdl-35178247

ABSTRACT

Mode-localized sensors have attracted attention because of their high parametric sensitivity and first-order common-mode rejection to temperature drift. The high-fidelity detection of resonator amplitude is critical to determining the resolution of mode-localized sensors where the measured amplitude ratio in a system of coupled resonators represents the output metric. Operation at specific bifurcation points in a nonlinear regime can potentially improve the amplitude bias stability; however, the amplitude ratio scale factor to the input measurand in a nonlinear regime has not been fully investigated. This paper theoretically and experimentally elucidates the operation of mode-localized sensors with respect to stiffness perturbations (or an external acceleration field) in a nonlinear Duffing regime. The operation of a mode-localized accelerometer is optimized with the benefit of the insights gained from theoretical analysis with operation in the nonlinear regime close to the top critical bifurcation point. The phase portraits of the amplitudes of the two resonators under different drive forces are recorded to support the experimentally observed improvements for velocity random walk. Employing temperature control to suppress the phase and amplitude variations induced by the temperature drift, 1/f noise at the operation frequency is significantly reduced. A prototype accelerometer device demonstrates a noise floor of 95 ng/√Hz and a bias instability of 75 ng, establishing a new benchmark for accelerometers employing vibration mode localization as a sensing paradigm. A mode-localized accelerometer is first employed to record microseismic noise in a university laboratory environment.

3.
Microsyst Nanoeng ; 7: 79, 2021.
Article in English | MEDLINE | ID: mdl-34721887

ABSTRACT

Whole-angle gyroscopes have broad prospects for development with inherent advantages of excellent scale factor, wide bandwidth and measurement range, which are restrictions on rate gyroscopes. Previous studies on the whole-angle mode are based mostly on the linear model of Lynch, and the essential nonlinearity of capacitive displacement detection is always neglected, which has significant negative effects on the performance. In this paper, a novel real-time calibration method of capacitive displacement detection is proposed to eliminate these nonlinear effects. This novel method innovatively takes advantage of the relationship between the first and third harmonic components of detective signals for calibration. Based on this method, the real-time calibration of capacitive displacement detection is achieved and solves the problems of traditional methods, which are usually related to the vibration amplitude, environmental variations and other factors. Furthermore, this novel calibration method is embedded into a whole-angle control system to restore the linear capacitive response in real time and then combined with a microshell resonator for the first time to exploit the enormous potential of an ultrahigh Q factor and symmetric structure. The effectiveness is proven because the angle drift is reduced significantly to improve the scale-factor nonlinearity by 14 times to 0.79 ppm with 0.0673°/h bias instability and a 0.001°/s rate threshold, which is the best reported performance of the MEMS whole-angle gyroscope thus far. More importantly, this novel calibration method can be applied for all kinds of resonators with the requirement of a linear capacitive response even under a large resonant amplitude.

4.
Article in English | MEDLINE | ID: mdl-33017284

ABSTRACT

Miniaturized physical transducers based on weakly coupled resonators have previously demonstrated the twin benefits of high parametric sensitivity and the first-order common-mode rejection of environmental effects. Current approaches to sensing based on coupled resonator transducers employ strong coupling where the modal overlap of the responses is avoided. This strong coupling limits the sensitivity for such mode-localized sensors that utilize an amplitude ratio (AR) output metric as opposed to tracking resonant frequency shifts. In this article, this limitation is broken through by theoretically and experimentally demonstrating the operation of the weakly coupled resonators in the weak-coupling (modal overlap) regime. Especially, a prototype microelectromechanical systems (MEMS) sensor based on this principle is employed to detect shifts in stiffness, with a stiffness bias instability of [Formula: see text]/m (9.5 ppb) and a corresponding noise floor of [Formula: see text]/m/ √ Hz (6.8 ppb/ √ Hz). The linear dynamic range of such AR readout sensors is first explored and found to be defined by the dynamic range of the secondary resonator. The proposed method provides a promising approach for high-performance resonant force and inertial sensors.

5.
Micromachines (Basel) ; 11(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086665

ABSTRACT

Damping asymmetry is one of the most important factors that determines the performance of Coriolis Vibratory Gyroscope. In this paper, a novel damping tuning method for the resonator with parallel plate capacitors is presented. This damping tuning method is based on resistance heat dissipation and the tuning effect is characterized by the control force in Whole-Angle mode. As the damping tuning and stiffness tuning in the resonator with parallel plate capacitors are coupled with each other, a corresponding tuning system is designed. To verify the tuning effects, experiments are conducted on a hemispherical resonator gyroscope with Whole-Angle mode. The damping tuning theories is demonstrated by the testing results and 87% of the damping asymmetry is reduced by this tuning method with a cost of 3% decaying time. Furthermore, the angle-dependent drift in rate measurement after tuning is only 15.6% of the one without tuning and the scale factor nonlinearity decreases from 5.49 ppm to 2.66 ppm. The method can be further applied on the damping tuning in other resonators with symmetrical structure.

6.
Nat Commun ; 10(1): 4980, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672971

ABSTRACT

Understanding and controlling modal coupling in micro/nanomechanical devices is integral to the design of high-accuracy timing references and inertial sensors. However, insight into specific physical mechanisms underlying modal coupling, and the ability to tune such interactions is limited. Here, we demonstrate that tuneable mode coupling can be achieved in capacitive microelectromechanical devices with dynamic electrostatic fields enabling strong coupling between otherwise uncoupled modes. A vacuum-sealed microelectromechanical silicon ring resonator is employed in this work, with relevance to the gyroscopic lateral modes of vibration. It is shown that a parametric pumping scheme can be implemented through capacitive electrodes surrounding the device that allows for the mode coupling strength to be dynamically tuned, as well as allowing greater flexibility in the control of the coupling stiffness. Electrostatic pump based sideband coupling is demonstrated, and compared to conventional strain-mediated sideband operations. Electrostatic coupling is shown to be very efficient, enabling strong, tunable dynamical coupling.

7.
Sensors (Basel) ; 17(5)2017 May 04.
Article in English | MEDLINE | ID: mdl-28471376

ABSTRACT

The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is mostly influenced by the damping characteristic of the cylindrical resonator. However, the tremendous damping influences caused by pasting piezoelectric electrodes on the gyroscope, which degrades the performance to a large extent, have rarely been studied. In this paper, the dynamical model is established to analyze various forms of energy consumption. In addition, a FE COMSOL model is also created to discuss the damping influences of several significant parameters of the adhesive layer and piezoelectric electrodes, respectively, and then explicit influence laws are obtained. Simulation results demonstrate that the adhesive layer has some impact on the damping characteristic, but it not significant. The Q factor decreases about 30.31% in total as a result of pasting piezoelectric electrodes. What is more, it is discovered that piezoelectric electrodes with short length, locations away from the outside edges, proper width and well-chosen thickness are able to reduce the damping influences to a large extent. Afterwards, experiments of testing the Q factor are set up to validate the simulation values.

SELECTION OF CITATIONS
SEARCH DETAIL
...