Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 20(1): 4, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31906854

ABSTRACT

BACKGROUND: Harpins are proteins secreted by the type III secretion system of Gram-negative bacteria during pathogen-plant interactions that can act as elicitors, stimulating defense and plant growth in many types of non-host plants. Harpin-treated plants have higher resistance, quality and yields and, therefore, harpin proteins may potentially have many valuable agricultural applications. Harpins are characterized by high thermal stability at 100 °C. However, it is unknown whether harpins are still active at temperatures above 100 °C or whether different temperatures affect the activity of the harpin protein in different ways. The mechanism responsible for the heat stability of harpins is also unknown. RESULTS: We identified a novel harpin, HpaXpm, from the cassava blight bacteria Xanthomonas phaseoli pv. manihotis HNHK. The predicted secondary structure and 3-D structure indicated that the HpaXpm protein has two ß-strand domains and two major α-helical domains located at the N- and C-terminal regions, respectively. A phylogenetic tree generated using the maximum likelihood method grouped HpaXpm in clade I of the Hpa1 group along with harpins produced by other Xanthomonas spp. (i.e., HpaG-Xag, HpaG-Xcm, Hpa1-Xac, and Hpa1Xm). Phenotypic assays showed that HpaXpm induced the hypersensitive response (HR), defense responses, and growth promotion in non-host plants more effectively than Hp1Xoo (X. oryzae pv. oryzae). Quantitative real-time PCR analysis indicated that HpaXpm proteins subjected to heat treatments at 100 °C, 150 °C, or 200 °C were still able to stimulate the expression of function-related genes (i.e., the HR marker genes Hin1 and Hsr203J, the defense-related gene NPR1, and the plant growth enhancement-related gene NtEXP6); however, the ability of heat-treated HpaXpm to induce HR was different at different temperatures. CONCLUSIONS: These findings add a new member to the harpin family. HpaXpm is heat-stable up to 200 °C and is able to stimulate powerful beneficial biological functions that could potentially be more valuable for agricultural applications than those stimulated by Hpa1Xoo. We hypothesize that the extreme heat resistance of HpaXpm is because the structure of harpin is very stable and, therefore, the HpaXpm structure is less affected by temperature.


Subject(s)
Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/pharmacology , Plant Development/drug effects , Xanthomonas/metabolism , Arabidopsis/drug effects , Arabidopsis/growth & development , Bacterial Outer Membrane Proteins/genetics , Gene Expression Regulation, Bacterial , Hot Temperature , Likelihood Functions , Models, Molecular , Phenotype , Phylogeny , Protein Domains , Protein Stability , Protein Structure, Secondary , Nicotiana/drug effects , Nicotiana/growth & development
2.
Chemosphere ; 225: 83-92, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30861386

ABSTRACT

Sediment pollution is an important environmental problem, and the remediation of heavy metal contaminated sediments is crucial to river ecosystem protection, especially in mining regions. In this work, characteristics of heavy metals (Cu, Zn, Cd, As and Hg) were investigated, including contents and fractions based on particle size (PS) in river sediments. Chemical leaching and stabilization for sediment remediation were performed, and the technology feasibility was assessed. The results indicated that the heavy metals were primarily reserved within fine sediments (PS < 75 µm), comprising 79.8% of the total. For the sequentially extracted fractions, residual fraction dominated the total content in large PS sections (PS > 150 µm), while the oxidizable fraction, reducible fraction and weak acid extractable fraction dominated the total content in fine sediments, except for that of Hg. Chemical leaching can transform most metals in sediments from large-sized particles to fine particles because the metals are absorbed by fine particles in solution rather than complexation. The stabilization suggested that cement could be an effective agent for ecological risk control for heavy metals. In field engineering, a total of 145,000 m3 sediment was divided into various sections by PS and synchronously washed by eluting agents. Finally, clean sediments (PS > 150 µm) were used as building material and clean backfilling; meanwhile, heavily polluted sediments (PS < 150 µm) were buried as general industrial solid waste after stabilization treatment. Over 90% of the contaminated sediments were reused throughout multistep remediation. Furthermore, a reduction in waste and harm, along with resources, was obtained. This study provided a feasible technology for heavy metal contaminated sediment remediation.


Subject(s)
Environmental Restoration and Remediation/methods , Metals, Heavy/isolation & purification , Water Pollutants, Chemical/analysis , China , Construction Materials , Geologic Sediments/chemistry , Industrial Waste/analysis , Metals, Heavy/analysis , Mining , Recycling/methods , Rivers/chemistry , Water Pollutants, Chemical/isolation & purification
3.
Sci Rep ; 9(1): 990, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30700772

ABSTRACT

Harpin proteins are produced by plant-pathogenic Gram-negative bacteria and regulate bacterial pathogenicity by inducing plant growth and defence responses in non-hosts. HpaG-Xcm, a novel harpin protein, was identified from Xanthomonas citri pv. mangiferaeindicae, which causes bacterial black spot of mango. Here, we describe the predicted structure and functions of HpaG-Xcm and investigate the mechanism of heat resistance. The HpaG-Xcm amino acid sequence contains seven motifs and two α-helices, in the N- and C-terminals, respectively. The N-terminal α-helical region contains two heptads, which form the coiled-coil (CC) structure. The CC region, which is on the surface of HpaG-Xcm, forms oligomeric aggregates by forming hydrophobic interactions between hydrophobic amino acids. Like other harpins, HpaG-Xcm was heat stable, promoted root growth and induced a hypersensitive response (HR) and systemic acquired resistance in non-host plants. Subjecting HpaG-Xcm to high temperatures altered the gene expression induced by HpaG-Xcm in tobacco leaves, probably due to changes in the spatial structure of HpaG-Xcm. Phenotypic tests revealed that the high-temperature treatments reduced the HR and disease resistance induced by HpaG-Xcm but had little effect on growth promotion. These findings indicate that the stability of interactions between CC and plants may be associated with thermal stability of HpaG-Xcm.


Subject(s)
Bacterial Proteins/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Hot Temperature , Xanthomonas/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Phylogeny , Plant Diseases/virology , Plant Leaves/genetics , Plant Leaves/virology , Protein Structure, Secondary , Protein Structure, Tertiary , Nicotiana/genetics , Nicotiana/immunology , Nicotiana/virology , Tobacco Mosaic Virus/physiology
4.
J Environ Sci (China) ; 74: 95-106, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30340679

ABSTRACT

Aluminum formate (AF), a degradable and non-corrosive coagulant, was synthesized from aluminum hydroxide and formic acid. Polyamidine (PA), as a coagulation aid, was combined with AF for dye wastewater treatment. AF was characterized by XPS, FT-IR, viscosity, zeta potential, mass spectrum and XRD, and the flocculation properties of the dual-coagulation system were characterized by FT-IR and SEM. The results showed that COOH, Al2O3-Al and O2-Al bonds were formed in the AF synthesis process, and AF had a higher molecular weight and higher charge neutralization ability than PAC. The hydrolysates of AF were determined to contain Al13 Al11 and Al2, and the components of AF were confirmed to comprise a mixture including aluminum formate (C3H3AlO6) and its hydrate. When the color removal efficiency reached 100% in jar tests, the optimized dosage of AF/PA was 18.91/0.71mg/L, while the optimized dosage of PAC/PA was 21.19/0.91mg/L. According to the variance analysis, the interaction between AF/PA and PAC/PA were insignificant in macroscopic view. FT-IR spectrum indicated AF captured pollutant by means of CCO bond, PAC captured pollutant by δ CH, CC and δ CH. Overall, although the coagulation mechanism of AF was different from that of PAC, AF/PA showed better coagulation efficiency than PAC/PA in dye wastewater treatment.


Subject(s)
Coloring Agents/chemistry , Coloring Agents/isolation & purification , Formates/chemistry , Formates/chemical synthesis , Wastewater/chemistry , Water Purification/methods , Chemistry Techniques, Synthetic , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
5.
Environ Sci Pollut Res Int ; 25(8): 7382-7390, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29275486

ABSTRACT

In this study, polyaluminum chloride (PAC) and cationic polymers were used to treat kaolin suspension in the presence of sodium dodecyl benzene sulfonate (SDBS). Effects of PAC dosage, pH, and rotation rate on the coagulation efficiency and floc properties were studied. And the interaction of chemicals and kaolin-SDBS was discussed. Results showed that dual coagulants could decrease the influence of SDBS on the turbidity removal compared with PAC. PAC + polyacrylamide dual coagulant showed superior performance, and the maximal removal ratios of turbidity and dissolved organic carbon were 98.5 and 42.2%, respectively. Optimal coagulation performance was achieved at pH 5-7, where charge neutralization of Al hydrolysates and bridging of polyacrylamide were the primary mechanisms. And flocs with compact structure and small size were formed. Flocs coagulated by PAC were prone to be broken at the pH of raw water after introducing high rotation rate. After dosing polyacrylamide, floc size was enhanced under alkaline condition. Meanwhile, flocs showed stronger recoverability and an open structure because the regeneration mechanism was mainly the bridging effect of polyacrylamide.


Subject(s)
Aluminum Hydroxide/chemistry , Cations/chemistry , Kaolin/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Wastewater/analysis , Water Purification/methods , Wastewater/chemistry
6.
Environ Sci Pollut Res Int ; 24(6): 5179-5188, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27349787

ABSTRACT

It is confirmed that nano-ZnO (nZnO) has impact on environment and is considered as heavy metal pollutants. It is a new technology that applies coagulation process to simultaneous removal of the nanoparticles and heavy metals. Environmental chemical behavior of ZnO in water, such as the dispersion, aggregation, sedimentation, and dissolution of releasing metal ions, has been systematically studied in this paper. The result shows that three kinds of nZnO state such as compacted sediment, suspended, and released is separately 36.54 %, 40.61 %, and 22.86 %. Enteromorpha polysaccharide (Ep) was used together with polyaluminum chloride (PAC) in surface water purification. In order to study the mechanism of simultaneous removal of residual nZnO particles and Zn2+, coagulation process was further applied in this study. The evolution of flocs size, strength, and recovery ability and fractal structure due to Ep addition was systematically studied in this paper. Results indicated that PAC-Ep was efficient in removing nZnO and Zn2+, which leads to more than 95 % particles, 50-60 % natural organic matter (NOM) removed, and 35 % of resolved heavy metal ion adsorbing-chelation. Ep was an efficient coagulant aid in enhancing performance of coagulation and generating flocs with bigger sizes, faster growth rates, and higher recovery abilities. Additionally, the flocs formed by PAC-Ep presented a much looser structure than flocs formed only by PAC. Graphical abstract ᅟ.


Subject(s)
Ulva , Water Purification/methods , Zinc Oxide , Zinc , Adsorption , Aluminum Hydroxide , Flocculation , Metals, Heavy , Polysaccharides/chemistry , Water , Water Pollutants, Chemical
7.
Fitoterapia ; 81(8): 1125-8, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20655992

ABSTRACT

A new sterol, 24-R-stigmasta-4,25-diene-3ß,6ß-diol (1), along with three known compounds (2-3), was isolated from the green alga Codium divaricatum Holmes, a traditional Chinese medicine, which is efficacious against cancer. All structures were determined by spectroscopic methods and comparison with related known compounds. Single-crystal X-ray crystallography allowed us to confirm the structure of 1. To our knowledge, the compound 1 is reported as the first from natural source, and compounds 2, 4 have not been isolated from green algae before.


Subject(s)
Chlorophyta/chemistry , Sterols/chemistry , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...