Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(19): 25422-25431, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695314

ABSTRACT

Flexible piezoresistive pressure sensors are garnering substantial attention, in line with advancements in biointegrated and wearable electronics. However, a significant portion of piezoresistive pressure sensors suffer from the trade-off between sensitivity and pressure range. Moreover, the current piezoresistive sensors generally rely on a rigid metallic electrode, severely deteriorating their long-term durability. Herein, a fully flexible piezoresistive sensor coupling polyurethane (PU) based electrode and active sensing element is proposed to circumvent the aforementioned problems. By rationally regulating the double-permeable conductive networks within the PU matrix, an elastomeric electrode and sensing element are implemented, respectively. The assembled heterostructured configurations enable impressive sensitivity up to 7.023 kPa-1, broad pressure detection (up to 420 kPa), an ultralow pressure sensing limit (0.1 Pa), and extraordinary operation stability over 80000 cyclic pressings along with fast response/relaxation times (60 ms/80 ms). Additionally, the fully flexible sensor is capable of both real-time detection of physiological signals and mimicking keyboards, implying its viability as a high-performance pressure sensor.

SELECTION OF CITATIONS
SEARCH DETAIL
...