Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Epigenetics ; 19(1): 2337087, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38564758

ABSTRACT

Decidual macrophages are the second-largest immune cell group at the maternal-foetal interface. They participate in apoptotic cell removal, and protect the foetus from microorganisms or pathogens. Dysfunction of decidual macrophages gives rise to pregnancy complications such as preeclampsia and recurrent spontaneous miscarriage (RSM). However, the mechanisms by which decidual macrophages are involved in the occurrence of adverse pregnancy outcomes have not been elucidated. Here we integrated DNA methylation and gene expression data from decidua macrophages to identify potential risk factors related to RSM. GPR133 was significantly hypomethylated and upregulated in decidual macrophages from RSM patients. Further demethylation analysis demonstrated that GPR133 expression in decidual macrophages was significantly increased by 5-Aza-dC treatment. In addition, the influence of GPR133 on the phagocytic ability of macrophages was explored. Phagocytosis was impaired in the decidual macrophages of RSM patients with increased GPR133 expression. Increased GPR133 expression induced by demethylation treatment in the decidual macrophages of healthy control patients led to a significant decrease in phagocytic function. Importantly, knockdown of GPR133 resulted in a significant improvement in the phagocytic function of THP-1 macrophages. In conclusion, the existing studies have shown the influence of GPR133 on the phagocytic function of decidual macrophages and pregnancy outcomes, providing new data and ideas for future research on the role of decidual macrophages in RSM.


Subject(s)
Abortion, Spontaneous , Decidua , Female , Humans , Pregnancy , Abortion, Spontaneous/genetics , Decidua/metabolism , DNA Methylation , Macrophages , Phagocytosis , Up-Regulation
2.
J Transl Med ; 21(1): 795, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940963

ABSTRACT

With the development of organic germanium and nanotechnology, germanium serves multiple biological functions, and its potential value in biochemistry and medicine has increasingly captured the attention of researchers. In recent years, germanium has gradually gained significance as a material in the field of biomedicine and shows promising application prospects. However, there has been a limited amount of research conducted on the biological effects and mechanisms of germanium, and a systematic evaluation is still lacking. Therefore, the aim of this review is to systematically examine the application of germanium in the field of biomedicine and contribute new insights for future research on the functions and mechanisms of germanium in disease treatment. By conducting a comprehensive search on MEDLINE, EMBASE, and Web of Science databases, we systematically reviewed the relevant literature on the relationship between germanium and biomedicine. In this review, we will describe the biological activities of germanium in inflammation, immunity, and antioxidation. Furthermore, we will discuss its role in the treatment of neuroscience and oncology-related conditions. This comprehensive exploration of germanium provides a valuable foundation for the future application of this element in disease intervention, diagnosis, and prevention.


Subject(s)
Germanium , Nanotechnology
3.
Front Nutr ; 10: 1191903, 2023.
Article in English | MEDLINE | ID: mdl-37575322

ABSTRACT

Substance use disorders (SUD) can lead to serious health problems, and there is a great interest in developing new treatment methods to alleviate the impact of substance abuse. In recent years, the ketogenic diet (KD) has shown therapeutic benefits as a dietary therapy in a variety of neurological disorders. Recent studies suggest that KD can compensate for the glucose metabolism disorders caused by alcohol use disorder by increasing ketone metabolism, thereby reducing withdrawal symptoms and indicating the therapeutic potential of KD in SUD. Additionally, SUD often accompanies increased sugar intake, involving neural circuits and altered neuroplasticity similar to substance addiction, which may induce cross-sensitization and increased use of other abused substances. Reducing carbohydrate intake through KD may have a positive effect on this. Finally, SUD is often associated with mitochondrial damage, oxidative stress, inflammation, glia dysfunction, and gut microbial disorders, while KD may potentially reverse these abnormalities and serve a therapeutic role. Although there is much indirect evidence that KD has a positive effect on SUD, the small number of relevant studies and the fact that KD leads to side effects such as metabolic abnormalities, increased risk of malnutrition and gastrointestinal symptoms have led to the limitation of KD in the treatment of SUD. Here, we described the organismal disorders caused by SUD and the possible positive effects of KD, aiming to provide potential therapeutic directions for SUD.

4.
Cell Rep Med ; 4(5): 101026, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37137303

ABSTRACT

Recurrent spontaneous miscarriage (RSM) affects 1%-2% of fertile women worldwide and poses a risk of future pregnancy complications. Increasing evidence has indicated that defective endometrial stromal decidualization is a potential cause of RSM. Here, we perform liquid chromatography with mass spectrometry (LC-MS)-based metabolite profiling in human endometrial stromal cells (ESCs) and differentiated ESCs (DESCs) and find that accumulated α-ketoglutarate (αKG) derived from activated glutaminolysis contributes to maternal decidualization. Contrarily, ESCs obtained from patients with RSM show glutaminolysis blockade and aberrant decidualization. We further find that enhanced Gln-Glu-αKG flux decreases histone methylation and supports ATP production during decidualization. In vivo, feeding mice a Glu-free diet leads to a reduction of αKG, impaired decidualization, and an increase of fetal loss rate. Isotopic tracing approaches demonstrate Gln-dependent oxidative metabolism as a prevalent direction during decidualization. Our results demonstrate an essential prerequisite of Gln-Glu-αKG flux to regulate maternal decidualization, suggesting αKG supplementation as a putative strategy to rectify deficient decidualization in patients with RSM.


Subject(s)
Abortion, Spontaneous , Decidua , Pregnancy , Humans , Female , Mice , Animals , Decidua/metabolism , Ketoglutaric Acids/metabolism , Abortion, Spontaneous/metabolism , Cells, Cultured , Endometrium/metabolism
5.
Front Bioeng Biotechnol ; 11: 1310149, 2023.
Article in English | MEDLINE | ID: mdl-38260736

ABSTRACT

Introduction: Intrauterine adhesions (IUA), also known as Asherman's syndrome, is caused by trauma to the pregnant or non-pregnant uterus, which leads to damaged endometrial basal lining and partial or total occlusion of the uterine chambers, resulting in abnormal menstruation, infertility, or recurrent miscarriage. The essence of this syndrome is endometrial fibrosis. And there is no effective treatment for IUA to stimulate endometrial regeneration currently. Recently, menstrual blood-derived stem cells (MenSCs) have been proved to hold therapeutic promise in various diseases, such as myocardial infarction, stroke, diabetes, and liver cirrhosis. Methods: In this study, we examined the effects of MenSCs on the repair of uterine adhesions in a rat model, and more importantly, promoted such therapeutic effects via a xeno-free VitroGel MMP carrier. Results: This combined treatment reduced the expression of inflammatory factors, increased the expression of anti-inflammatory factors, restricted the area of endometrial fibrosis, diminished uterine adhesions, and partially restored fertility, showing stronger effectiveness than each component alone and almost resembling the sham group. Discussion: Our findings suggest a highly promising strategy for IUA treatment.

6.
Front Oncol ; 12: 1020400, 2022.
Article in English | MEDLINE | ID: mdl-36387070

ABSTRACT

Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide, with high morbidity and mortality rates worldwide. Therefore, there is an urgent need to develop more effective treatments for CRC patients. In recent years, there has been some success in the immunotherapy of tumors, and immunotherapy has been used in many solid tumors including CRC. To date, the clinical efficacy of immunotherapy for CRC is limited, so more effective immunotherapy methods need to be explored. In patients with CRC, the CC chemokine CCL5 plays a role in the development of CRC and the recruitment and activation of immune cells, suggesting that it has potential for immunotherapy. This review mainly introduces the latest advances in the study of CCL5 acting as a marker of CRC and related mechanisms of immunotherapy, as well as the latest understanding of how CCL5 is involved in the invasion and development of CRC.

7.
Front Immunol ; 13: 880286, 2022.
Article in English | MEDLINE | ID: mdl-35911719

ABSTRACT

Macrophages are versatile immune cells associated with various diseases, and their phenotypes and functions change on the basis of the surrounding environments. Reprogramming of metabolism is required for the proper polarization of macrophages. This review will focus on basic metabolic pathways, the effects of key enzymes and specific products, relationships between cellular metabolism and macrophage polarization in different diseases and the potential prospect of therapy targeted key metabolic enzymes. In particular, the types and characteristics of macrophages at the maternal-fetal interface and their effects on a successful conception will be discussed.


Subject(s)
Macrophage Activation , Macrophages , Phenotype
8.
Front Mol Neurosci ; 15: 829886, 2022.
Article in English | MEDLINE | ID: mdl-35295707

ABSTRACT

Methamphetamine (MA) abuse results in neurotoxic outcomes, including increased anxiety and depression. Studies have reported an association between MA exposure and anxiety, nonetheless, the underlying mechanism remains elusive. In the present study, we developed a mouse model of anxiety-like behavior induced by MA administration. RNA-seq was then performed to profile the gene expression patterns of hippocampus (HIPP), and the differentially expressed genes (DEGs) were significantly enriched in signaling pathways related to psychiatric disorders and mitochondrial function. Based on these, mitochondria was hypothesized to be involved in MA-induced anxiety. Quercetin, as a mitochondrial protector, was used to investigate whether to be a potential treatment for MA-induced anxiety; accordingly, it alleviated anxiety-like behavior and improved mitochondrial impairment in vivo. Further experiments in vitro suggested that quercetin alleviated the dysfunction and morphological abnormalities of mitochondria induced by MA, via decreasing the levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and increasing the oxygen consumption rate (OCR) and ATP production. Moreover, the study examined the effect of quercetin on astrocytes activation and neuroinflammation, and the results indicated that it significantly attenuated the activation of astrocytes and reduced the levels of IL-1ß, TNFα but not IL-6. In light of these findings, quantitative evidence is presented in the study supporting the view that MA can evoke anxiety-like behavior via the induction of mitochondrial dysfunction. Quercetin exerted antipsychotic activity through modulation of mitochondrial function and neuroinflammation, suggesting its potential for further therapeutic development in MA-induced anxiety.

9.
Hum Reprod ; 36(12): 3049-3061, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34647126

ABSTRACT

STUDY QUESTION: Is the protein l-arginine methyltransferase 3 (PRMT3)/asymmetrical dimethylarginine (ADMA)/nitric oxide (NO) pathway involved in the development of recurrent miscarriage (RM), and what is the potential mechanism? SUMMARY ANSWER: Elevated levels of PRMT3 and ADMA inhibit NO formation in the decidua, thereby impairing the functions of trophoblast cells at the maternal-foetal interface. WHAT IS KNOWN ALREADY: Decreased NO bioavailability is associated with RM. ADMA, an endogenous inhibitor of nitric oxide synthase (NOS), is derived from the methylation of protein arginine residues by PRMTs and serves as a predictor of mortality in critical illness. STUDY DESIGN, SIZE, DURATION: A total of 145 women with RM and 149 healthy women undergoing elective termination of an early normal pregnancy were enrolled. Ninety-six female CBA/J, 24 male DBA/2 and 24 male BALB/c mice were included. CBA/J × DBA/2 matings represent the abortion group, while CBA/J × BALB/c matings represent the normal control group. The CBA/J pregnant mice were then categorised into four groups: (i) normal + vehicle group (n = 28), (ii) abortion + vehicle group (n = 28), (iii) normal + SGC707 (a PRMT3 inhibitor) group (n = 20) and (iv) abortion + SGC707 group (n = 20). All injections were made intraperitoneally on Days 0.5, 3.5 and 6.5 of pregnancy. Decidual tissues were collected on Days 8.5, 9.5 and 10.5 of gestation. The embryo resorption rates were calculated on Day 9.5 and Day 10.5 of gestation. PARTICIPANTS/MATERIALS, SETTING, METHODS: NO concentration, ADMA content, NOS activity, expression levels of NOS and PRMTs in decidual tissues were determined using conventional assay kits or western blotting. PRMT3 expression was further analysed in decidual stromal cells, macrophages and natural killer cells. A co-culture system between decidual macrophages (DMs) and HTR-8/SVneo trophoblasts was constructed to study the roles of the PRMT3/ADMA/NO signalling pathway. Trophoblast apoptosis was analysed via Annexin V-fluorescein isothiocyanate/propidium iodide staining. CBA/J × DBA/2 mouse models were used to investigate the effects of SGC707 on embryo resorption rates. MAIN RESULTS AND THE ROLE OF CHANCE: Our results show that NO concentration and NOS activity were decreased, but ADMA content and PRMT3 expression were increased in the decidua of RM patients. Moreover, compared with the normal control subjects, PRMT3 expression was significantly up-regulated in the macrophages but not in the natural killer cells or stromal cells of the decidua from RM patients. The inhibition of PRMT3 results in a significant decrease in ADMA accumulation and an increase in NO concentration in macrophages. When co-cultured with DMs, which were treated with SGC707 and ADMA, trophoblast apoptosis was suppressed and induced, respectively. In vivo experiments revealed that the administration of SGC707 reduced the embryo resorption rate of CBA/J × DBA/2 mice. LIMITATIONS, REASONS FOR CAUTION: All sets of experiments were not performed with the same samples. The main reason is that each tissue needs to be reserved for clinical diagnosis and only a small piece of each tissue can be cut and collected for this study. WIDER IMPLICATIONS OF THE FINDINGS: Our results indicate that the PRMT3/ADMA/NO pathway is a potential marker and target for the clinical diagnosis and therapy of RM. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the National Key Research and Development Program of China (2017YFC1001401), National Natural Science Foundation of China (81730039, 82071653, 81671460, 81971384 and 82171657) and Shanghai Municipal Medical and Health Discipline Construction Projects (2017ZZ02015). The authors have declared no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Abortion, Habitual , Arginine , Macrophages , Nitric Oxide , Protein-Arginine N-Methyltransferases/metabolism , Trophoblasts , Abortion, Habitual/metabolism , Animals , Apoptosis , Arginine/analogs & derivatives , Arginine/metabolism , China , Decidua/metabolism , Female , Humans , Intracellular Signaling Peptides and Proteins , Macrophages/metabolism , Male , Mice , Mice, Inbred CBA , Mice, Inbred DBA , Nitric Oxide/metabolism , Pregnancy , Trophoblasts/metabolism
10.
J Hazard Mater ; 416: 125725, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33813292

ABSTRACT

The combination of ball milling technology and biochar materials provides new prospects for environmentally friendly and sustainable environmental pollution control technologies, but comes with opportunities and risks. In this study, column experiments were used to evaluate the environmental behavior of ball­milled biochar (BMBC). The results of the column experiments showed that BMBC transport increased with a high flow velocity, large medium size, high pH, and low ionic strength. Owing to the strong adsorption of Cd2+ by BMBC, the presence of BMBC in the medium led to a decrease in effluent Cd2+. The presence of Cd2+ in the solution slightly inhibited the transport of BMBC. The transport of Cd2+ was facilitated by BMBC due to the high affinity. Therefore, attention should be paid to favorable conditions for BMBC transport. This study provides a perspective to assess the behavior of BMBC in the environment and whether its interaction with Cd2+ will introduce new environmental hazards.


Subject(s)
Cadmium , Charcoal , Adsorption , Porosity
11.
Sci Rep ; 11(1): 6271, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737514

ABSTRACT

Psychiatric disorders such as anxiety and depression precipitated by substance use occurred during both use and withdrawal. Exosomes play significant roles in biological functions and regulate numerous physiological and pathological processes in various diseases, in particular substance use disorders (SUDs) and other psychiatric disorders. To better understand the role of exosomal miRNAs in the pathology of symptoms of anxiety and depression in patients with SUDs, we first isolated circulating exosomes from heroin-dependent patients (HDPs) and methamphetamine-dependent patients (MDPs) and identified exosomal miRNAs that were differentially expressed between patients and healthy controls (HCs). Furthermore, the correlations between exosomal DE-miRNAs and symptoms of anxiety and depression which were measured using Hamilton-Anxiety (HAM-A)/Hamilton-Depression (HAM-D) Rating Scales in the participants. Notably, the expression level of exosomal hsa-miR-16-5p, hsa-miR-129-5p, hsa-miR-363-3p, and hsa-miR-92a-3p showed significantly negative correlations with HAM-A scores in both HDPs and MDPs. But all of the 4 DE-miRNAs lost significant correlations with HAM-D scores in HDPs. Functional annotation analyses showed that the target genes of the DE-miRNAs were mainly enriched for "synapse", "cell adhesion", "focal adhesion" and "MHC class II protein complex". Our study suggests that a set of circulating exosomal miRNAs were associated with anxiety and depression in SUD patients and may have clinical utility as diagnostic and prognostic biomarkers.


Subject(s)
Amphetamine-Related Disorders/blood , Amphetamine-Related Disorders/epidemiology , Anxiety/blood , Anxiety/epidemiology , Circulating MicroRNA/blood , Depression/blood , Depression/epidemiology , Exosomes/metabolism , Heroin Dependence/blood , Heroin Dependence/epidemiology , Adult , Anxiety Disorders/epidemiology , Biomarkers/blood , Case-Control Studies , Circulating MicroRNA/genetics , Cluster Analysis , Comorbidity , Depressive Disorder/epidemiology , Female , Humans , Male , Prognosis , RNA-Seq/methods
12.
Ann Transl Med ; 8(24): 1669, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33490181

ABSTRACT

BACKGROUND: Methamphetamine use has become a serious global public health problem and puts increasing burdens on healthcare services. Abdominal complications caused by methamphetamine use are uncommon and often go ignored by clinicians. The exact intestinal pathological alterations and transcriptomic responses associated with methamphetamine use are not well understood. This study sought to investigate the transcriptome in a methamphetamine-induced mouse model of inflammatory bowel disease (IBD) using next-generation RNA sequencing. METHODS: Tissues from the ileum of methamphetamine-treated mice (n=5) and control mice (n=5) were dissected, processed and applied to RNA-sequencing. Bioinformatics and histopathological analysis were then performed. The expression profiles of intestinal tissue samples were analyzed and their expression profiles were integrated to obtain the differentially expressed genes and analyzed using bioinformatics. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the differentially expressed genes were performed using Metascape. RESULTS: A total of 326 differentially expressed genes were identified; of these genes, 120 were upregulated and 206 were downregulated. The Gene Ontology analysis showed that the biological processes of the differentially expressed genes were focused primarily on the regulation of cellular catabolic processes, endocytosis, and autophagy. The main cellular components included the endoplasmic and endocytic vesicles, cytoskeleton, adherens junctions, focal adhesions, cell body, and lysosomes. Molecular functions included protein transferase, GTPase and proteinase activities, actin-binding, and protein-lipid complex binding. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the differentially expressed genes were mainly involved in bacterial invasion of epithelial cells, protein processing in the endoplasmic reticulum, regulation of the actin cytoskeleton, and T-cell receptor signaling pathways. A set of overlapping genes between IBD and methamphetamine-treated intestinal tissues was discovered. CONCLUSIONS: The present study is the first to analyze intestinal samples from methamphetamine-treated mice using high-throughput RNA sequencing. This study revealed key molecules that might be involved in the pathogenesis of a special type of methamphetamine-induced IBD. These results offer new insights into the relationship between methamphetamine abuse and IBD.

SELECTION OF CITATIONS
SEARCH DETAIL
...