Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37176174

ABSTRACT

High chromium cast iron (HCCI) has been widely used as wear-resistant material in the industry. Alloying is an effective way to improve the microstructure and mechanical properties of HCCI. This paper added multi-component V-Fe-Ti-Nb-C-Zr-B alloy (VFC) to HCCI, showing a significant synergistic solution-strengthening effect. The results show that the added V-Ti-Nb-B are dissolved in M7C3 carbide to form the (Cr, Fe, V, Ti, Nb)7(C, B)3 alloy carbide, and a small amount of V and all Zr are dissolved in austenite and martensite. Adding VFC into HCCI improved the hardenability of HCCI, decreased the residual austenite content from 6.0 wt% to 0.9 wt%, increased the martensite content from 70.7 wt% to 82.5 wt%, and changed the structure and content of M7C3 carbide. These changes increased the hardness of as-cast and heat-tread HCCI by 1.4% and 4.1%, increased the hardness of austenite and martensite by 7.9% and 7.0%, increased the impact toughness by 16.9%, and decreased the friction coefficient and wear loss by 2.3 % and 7.0 %, respectively. Thus, the hardness, toughness, wear resistance, and friction resistance of HCCI alloy are improved simultaneously.

2.
J Nanosci Nanotechnol ; 3(5): 410-2, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14733152

ABSTRACT

This paper deals with the interaction mechanism between in situ nanometer-grade TiN-AlN particles and the solid/liquid (S/L) interface during the solidification of an in situ TiN-AlN/Al composite. According to the setting of a force balance for the particles in front of the S/L interface during solidification, F = F(buoyant) + F(repulsive) + F(viscous). We obtained the relationship between the critical cooling velocity of the liquid composite, Vr, and the size of the ceramic particle, rp. By this relationship formula, we can know that the S/L interface engulfs particles or pushes them to the crystal grain boundary during the solidification of a TiN-AlN/Al composite. It is found that Vr is proportional to the radius of ceramic particles by transmission electron microscope (TEM) observation. The TEM test indicates that the smaller the particle is, the more easily the S/L interface engulfs particles.


Subject(s)
Aluminum Compounds/chemistry , Ceramics/chemistry , Crystallization/methods , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Titanium/chemistry , Aluminum Compounds/chemical synthesis , Ceramics/chemical synthesis , Macromolecular Substances , Materials Testing , Models, Molecular , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...