Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Brain Res ; 1840: 149049, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825161

ABSTRACT

BACKGROUND: Previous studies have revealed structural brain abnormalities in individuals with depression, but the causal relationship between depression and brain structure remains unclear. METHODS: A genetic correlation analysis was conducted using summary statistics from the largest genome-wide association studies for depression (N = 674,452) and 1,265 brain structural imaging-derived phenotypes (IDPs, N = 33,224). Subsequently, a bidirectional two-sample Mendelian Randomization (MR) approach was employed to explore the causal relationships between depression and the IDPs that showed genetic correlations with depression. The main MR results were obtained using the inverse variance weighted (IVW) method, and other MR methods were further employed to ensure the reliability of the findings. RESULTS: Ninety structural IDPs were identified as being genetically correlated with depression and were included in the MR analyses. The IVW MR results indicated that reductions in the volume of several brain regions, including the bilateral subcallosal cortex, right medial orbitofrontal cortex, and right middle-posterior part of the cingulate cortex, were causally linked to an increased risk of depression. Additionally, decreases in surface area of the right middle temporal visual area, right middle temporal cortex, right inferior temporal cortex, and right middle-posterior part of the cingulate cortex were causally associated with a heightened risk of depression. Validation and sensitivity analyses supported the robustness of these findings. However, no evidence was found for a causal effect of depression on structural IDPs. CONCLUSIONS: Our findings reveal the causal influence of specific brain structures on depression, providing evidence to consider brain structural changes in the etiology and treatment of depression.

2.
J Transl Med ; 22(1): 565, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872189

ABSTRACT

Wnt/ß-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Wnt Signaling Pathway , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Drug Resistance, Neoplasm/genetics , Animals , beta Catenin/metabolism
3.
Sci Rep ; 14(1): 6270, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491127

ABSTRACT

ALYREF is considered as a specific mRNA m5C-binding protein which recognizes m5C sites in RNA and facilitates the export of RNA from the nucleus to the cytoplasm. Expressed in various tissues and highly involved in the transcriptional regulation, ALYREF has the potential to become a novel diagnostic marker and therapeutic target for cancer patients. However, few studies focused on its function during carcinogenesis and progress. In order to explore the role of ALYREF on tumorigenesis, TCGA and GTEx databases were used to investigate the relationship of ALYREF to pan-cancer. We found that ALYREF was highly expressed in majority of cancer types and that elevated expression level was positively associated with poor prognosis in many cancers. GO and KEGG analysis showed that ALYREF to be essential in regulating the cell cycle and gene mismatch repair in tumor progression. The correlation analysis of tumor heterogeneity indicated that ALYREF could be specially correlated to the tumor stemness in stomach adenocarcinoma (STAD). Furthermore, we investigate the potential function of ALYREF on gastric carcinogenesis. Prognostic analysis of different molecular subtypes of gastric cancer (GC) unfolded that high ALYREF expression leads to poor prognosis in certain subtypes of GC. Finally, enrichment analysis revealed that ALYREF-related genes possess the function of regulating cell cycle and apoptosis that cause further influences in GC tumor progression. For further verification, we knocked down the expression of ALYREF by siRNA in GC cell line AGS. Knockdown of ALYREF distinctly contributed to inhibition of GC cell proliferation. Moreover, it is observed that knocked-down of ALYREF induced AGS cells arrested in G1 phase and increased cell apoptosis. Our findings highlighted the essential function of ALYREF in tumorigenesis and revealed the specific contribution of ALYREF to gastric carcinogenesis through pan-cancer analysis and biological experiments.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Prognosis , Biomarkers, Tumor/genetics , RNA, Small Interfering , Carcinogenesis/genetics , Cell Line, Tumor , Nuclear Proteins/metabolism , Transcription Factors/metabolism , RNA-Binding Proteins
4.
Invest New Drugs ; 42(2): 185-195, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372948

ABSTRACT

Acquired resistance is a significant hindrance to clinical application of lenvatinib in unresectable hepatocellular carcinoma (HCC). Further in-depth investigation of resistance mechanisms can help to develop additional therapeutic strategies to overcome or delay resistance. In our study, two lenvatinib-resistant (LR) HCC cell lines were established by treatment with gradient increasing concentration of lenvatinib, named Hep3B-LR and HepG2-LR. Interestingly, continuous lenvatinib treatment reinforced epithelial-mesenchymal transition (EMT), cell migration, and cell invasion. Gene set enrichment analysis (GSEA) enrichment analysis of RNA-sequencing from Hep3B-LR and corresponding parental cells revealed that activation of Wnt signaling pathway was involved in this adaptive process. Active ß-catenin and its downstream target lymphoid enhancer binding factor 1 (LEF1) were significantly elevated in LR HCC cells, which promoted lenvatinib resistance through mediating EMT-related genes. Data analysis based on Gene Expression Omnibus (GEO) and the Cancer Genome Atlas Program (TCGA) databases suggests that LEF1, as a key regulator of EMT, was a novel molecular target linked to lenvatinib resistance and poor prognosis in HCC. Using a small-molecule specific inhibitor ICG001 and knocking down LEF1 showed that targeting LEF1 restored the sensitivity of LR HCC cells to lenvatinib. Our results uncover upregulation of LEF1 confers lenvatinib resistance by facilitating EMT, cell migration, and invasion of LR HCC cells, indicating that LEF1 is a novel therapeutic target for overcoming acquired lenvatinib resistance.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Phenylurea Compounds , Quinolines , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic
5.
Med Image Anal ; 93: 103102, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367598

ABSTRACT

Rare diseases are characterized by low prevalence and are often chronically debilitating or life-threatening. Imaging phenotype classification of rare diseases is challenging due to the severe shortage of training examples. Few-shot learning (FSL) methods tackle this challenge by extracting generalizable prior knowledge from a large base dataset of common diseases and normal controls and transferring the knowledge to rare diseases. Yet, most existing methods require the base dataset to be labeled and do not make full use of the precious examples of rare diseases. In addition, the extremely small size of the training samples may result in inter-class performance imbalance due to insufficient sampling of the true distributions. To this end, we propose in this work a novel hybrid approach to rare disease imaging phenotype classification, featuring three key novelties targeted at the above drawbacks. First, we adopt the unsupervised representation learning (URL) based on self-supervising contrastive loss, whereby to eliminate the overhead in labeling the base dataset. Second, we integrate the URL with pseudo-label supervised classification for effective self-distillation of the knowledge about the rare diseases, composing a hybrid approach taking advantage of both unsupervised and (pseudo-) supervised learning on the base dataset. Third, we use the feature dispersion to assess the intra-class diversity of training samples, to alleviate the inter-class performance imbalance via dispersion-aware correction. Experimental results of imaging phenotype classification of both simulated (skin lesions and cervical smears) and real clinical rare diseases (retinal diseases) show that our hybrid approach substantially outperforms existing FSL methods (including those using a fully supervised base dataset) via effective integration of the URL, pseudo-label driven self-distillation, and dispersion-aware imbalance correction, thus establishing a new state of the art.


Subject(s)
Rare Diseases , Retinal Diseases , Humans , Phenotype , Diagnostic Imaging
6.
Foods ; 13(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38254610

ABSTRACT

Potato is susceptible to light exposure and wounding during harvesting and transportation. However, the metabolite profile changes in these potato tubers are unclear. The potato cultivars in this study included Hezuo88 (HZ88), Shida6 (SD6), and Jianchuanhong (JCH); the effects of light exposure (L), wounding (W), and the cooking process on potato metabolites were determined. In total, 973 metabolites were identified, with differential metabolites (mainly alkaloids, flavonoids, and phenolic acids) accumulated on days 0 and 2 (0 d and 2 d) in the 0dHZ88 vs. 0dJCH (189), 0dHZ88 vs. 0dSD6 (147), 0dSD6 vs. 0dJCH (91), 0dJCH vs. 2dIJCH (151), 0dJCH vs. 2dWDJCH (250), 0dJCH vs. 2dWLJCH (255), 2dIJCH vs. 2dWDJCH (234), and 2dIJCH vs. 2dWLJCH (292) groups. The flavonoid content in the light exposure group was higher than that in the dark group. The alkaloid content in the wounded group was higher than that in the uninjured potato tuber group, but the lipid content in the wounded group was lower. Importantly, only 5.54% of the metabolites changed after potato tuber steaming. These results provide valuable information for the breeding and consumption of potato tubers.

7.
Front Genet ; 14: 1239550, 2023.
Article in English | MEDLINE | ID: mdl-37732315

ABSTRACT

Panicle traits are important for improving the panicle architecture and grain yield of rice. Therefore, we performed a genome-wide association study (GWAS) to analyze and determine the genetic determinants of five panicle traits. A total of 1.29 million single nucleotide polymorphism (SNP) loci were detected in 162 rice materials. We carried out a GWAS of panicle length (PL), total grain number per panicle (TGP), filled grain number per panicle (FGP), seed setting rate (SSR) and grain weight per panicle (GWP) in 2019, 2020 and 2021. Four quantitative trait loci (QTLs) for PL were detected on chromosomes 1, 6, and 9; one QTL for TGP, FGP, and GWP was detected on chromosome 4; two QTLs for FGP were detected on chromosomes 4 and 7; and one QTL for SSR was detected on chromosome 1. These QTLs were detected via a general linear model (GLM) and mixed linear model (MLM) in both years of the study period. In this study, the genomic best linear unbiased prediction (BLUP) method was used to verify the accuracy of the GWAS results. There are nine QTLs were both detected by the multi-environment GWAS method and the BLUP method. Moreover, further analysis revealed that three candidate genes, LOC_Os01g43700, LOC_Os09g25784, and LOC_Os04g47890, may be significantly related to panicle traits of rice. Haplotype analysis indicated that LOC_Os01g43700 and LOC_Os09g25784 are highly associated with PL and that LOC_Os04g47890 is highly associated with TGP, FGP, and GWP. Our results offer essential genetic information for the molecular improvement of panicle traits. The identified candidate genes and elite haplotypes could be used in marker-assisted selection to improve rice yield through pyramid breeding.

8.
J Oncol ; 2023: 1875153, 2023.
Article in English | MEDLINE | ID: mdl-36873738

ABSTRACT

Background: HLA-DR+ T cell, accounting for 1.2%-5.8% of peripheral lymphocyte, is a type of activated T lymphocyte. This retrospective study aimed to evaluate the prognostic value of HLA-DR+ T cell for progression-free survival (PFS) and overall survival (OS) in hepatocellular carcinoma (HCC) patients after curative surgery. Patients and Methods. Clinicopathological data of 192 patients who underwent curative resection for hepatocellular carcinoma in the affiliated hospital of Qingdao University between January 2013 and December 2021 were collected and analyzed. Statistical tests used in this study were the chi-square test and Fisher's exact test. The prognostic value of the HLA-DR+ T cell ratio was analyzed using univariate and multivariate Cox regression analyses. The Kaplan-Meier curves were drawn by the R programming language. Results: HCC patients were divided into high (≥5.8%) and low (<5.8%) HLADR+ T cell ratio groups. Cox regression analysis indicated that a high HLA-DR+ T cell ratio was positively related to the PFS in HCC patients (P=0.003) and AFP-positive (≥20 ng/ml) HCC patients (P=0.020). HCC patients and AFP-positive HCC patients in the high HLA-DR+ T cell ratio group were prone to have a higher T cell ratio, a higher CD8+T cell ratio, and a lower B cell ratio than the low HLA-DR+ T cell ratio group. However, the HLA-DR+ T cell ratio was not a statistically significant predictor for OS in HCC patients (P=0.57) as well as PFS (P=0.088) and OS (P=0.63) in AFP-negative HCC patients. Conclusions: This study confirmed that the HLA-DR+ T cell ratio was a significant predictor of PFS in HCC patients and AFP-positive HCC patients after curative surgery. This association may have guiding significance for the follow-up work of HCC patients after surgery.

9.
Biomolecules ; 13(2)2023 01 20.
Article in English | MEDLINE | ID: mdl-36830579

ABSTRACT

Oncogenic mutations within the EGFR kinase domain are well-established driver mutations in non-small cell lung cancer (NSCLC). Small-molecule tyrosine kinase inhibitors (TKIs) specifically targeting these mutations have improved treatment outcomes for patients with this subtype of NSCLC. The selectivity of these targeted agents is based on the location of the mutations within the exons of the EGFR gene, and grouping mutations based on structural similarities has proved a useful tool for conceptualizing the heterogeneity of TKI response. Structure-based analysis of EGFR mutations has influenced TKI development, and improved structural understanding will inform continued therapeutic development and further improve patient outcomes. In this review, we summarize recent progress on targeted therapy strategies for patients with EGFR-mutant NSCLC based on structure and function analysis.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , ErbB Receptors , Antineoplastic Agents/pharmacology , Mutation , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm
10.
Biomed Chromatogr ; 37(3): e5569, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36527197

ABSTRACT

Kidney-yang-deficiency-syndrome (KYDS) is a metabolic disease caused by neuroendocrine disorder. Gushudan (GSD) is a traditional Chinese medicine prescription with the effect of nourishing kidney and strengthening bones. In this study, the mechanism of preventive effect of GSD on KYDS was explored by integrating metabolomics and serum pharmacochemistry. Reversed-phase/hydrophilic interaction chromatography-ultra-high-performance liquid chromatography-Quadrupole-Orbitrap high-resolution mass spectrometry (RP/HILIC-UHPLC-Q-Orbitrap HRMS)-based serum metabolomics indicated metabolic disturbances of KYDS rats, and 50 potential biomarkers including l-threonine, succinic acid and phytosphingosine were obtained, which were mainly involved in alanine, aspartate and glutamate metabolism, citrate cycle (tricarboxylic acid cycle) and glycerophospholipid metabolism, among others. Serum pharmacochemistry identified 29 prototypical ingredients and 9 metabolites of GSD after administration, such as icaritin and xanthotoxol. The combination of 10 serum migration ingredients in GSD, including icaritin and osthole, with 7 important targets, including AKT serine/threonine kinase 1 (AKT1) and MAPK14, was found to be key for GSD to prevent KYDS in the network pharmacology study. This study provided a new idea for the research of pathogenesis of diseases and the pharmacodynamic mechanism of traditional Chinese medicine.


Subject(s)
Drugs, Chinese Herbal , Rats , Animals , Drugs, Chinese Herbal/pharmacology , Metabolomics/methods , Yang Deficiency/metabolism , Kidney/metabolism , Biomarkers , Chromatography, High Pressure Liquid
11.
Chembiochem ; 23(22): e202200421, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36149045

ABSTRACT

Photodynamic therapy (PDT) is a relatively safe approach to cancer treatment without significant systemic side effects or drug resistance. However, the current PDT efficiency is unsatisfactory due to the lack of near-infrared (NIR) photosensitizers. Heptamethine cyanine (Cy7) dyes are well-known NIR fluorophores and are also used as photosensitizers. But their singlet oxygen quantum yields (ΦΔ ) are not ideal. Herein, we developed an NIR photosensitizer with a long-lived excited triplet state (τ=4.3 µs) by introducing a selenium atom into the structure of a Cy7 dye. The new NIR photosensitizer exhibits a significantly high singlet oxygen quantum yield (ΦΔ =0.11). Its good PDT effect was demonstrated in the living cells. Considering that the selenium-substituted photosensitizer has a very low dark cytotoxicity and good chemical stability, we conclude that it will have a promising future in biomedical and clinical applications.


Subject(s)
Photochemotherapy , Selenium , Photosensitizing Agents/chemistry , Singlet Oxygen/chemistry , Fluorescent Dyes/chemistry
12.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112185, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34749191

ABSTRACT

We report a general strategy to generate linear and circular gradients of active proteins or polymeric microparticles on planar surfaces by controlling the distribution of electrostatic field during electrohydrodynamic jet printing or electrospray process. Taking fibronectin as an example, we generated a circular gradient of fibronectin and investigated its effect on accelerating the migration of fibroblasts to suit for use in wound closure. In another demonstration, we created linear gradients of laminin in unidirectional and bidirectional patterns, respectively. We showed that such gradations significantly promoted the migration of human neuroblastoma cells with the increase of laminin content. When we changed fibronectin/laminin to electrosprayed poly(lactic-co-glycolic acid) (PLGA) microparticles, we found similar results in terms of guiding cell migration, except that the guidance cues varied from biological signal to topographic structure. Taken together, this method for generating linear/circular gradients of fibronectin/laminin and PLGA microparticles can be readily extended to different types of bioactive proteins and polymeric microparticles to suit wound closure, nerve repair, and related applications involving cell migration.


Subject(s)
Lactic Acid , Polyglycolic Acid , Cell Movement , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Static Electricity
13.
Proc Natl Acad Sci U S A ; 116(11): 5118-5125, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30796183

ABSTRACT

The GABAergic system serves as a vital negative modulator in cognitive functions, such as learning and memory, while the mechanisms governing this inhibitory system remain to be elucidated. In Drosophila, the GABAergic anterior paired lateral (APL) neurons mediate a negative feedback essential for odor discrimination; however, their activity is suppressed by learning via unknown mechanisms. In aversive olfactory learning, a group of dopaminergic (DA) neurons is activated on electric shock (ES) and modulates the Kenyon cells (KCs) in the mushroom body, the center of olfactory learning. Here we find that the same group of DA neurons also form functional synaptic connections with the APL neurons, thereby emitting a suppressive signal to the latter through Drosophila dopamine 2-like receptor (DD2R). Knockdown of either DD2R or its downstream molecules in the APL neurons results in impaired olfactory learning at the behavioral level. Results obtained from in vivo functional imaging experiments indicate that this DD2R-dependent DA-to-APL suppression occurs during odor-ES conditioning and discharges the GABAergic inhibition on the KCs specific to the conditioned odor. Moreover, the decrease in odor response of the APL neurons persists to the postconditioning phase, and this change is also absent in DD2R knockdown flies. Taken together, our findings show that DA-to-GABA suppression is essential for restraining the GABAergic inhibition during conditioning, as well as for inducing synaptic modification in this learning circuit. Such circuit mechanisms may play conserved roles in associative learning across species.


Subject(s)
Conditioning, Psychological , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , GABAergic Neurons/metabolism , Learning , Olfactory Pathways/metabolism , Receptors, Dopamine D2/metabolism , Animals , Dopamine/metabolism , Electric Stimulation , Female , Smell , Synapses/metabolism
14.
Biomed Chromatogr ; 33(4): e4456, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30536598

ABSTRACT

A rapid, selective and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed to simultaneously determine oxybutynin and its active metabolite N-desethyl oxybutynin in rat plasma. A 0.1 mL sample of plasma was extracted with n-hexane. Chromatographic separation was performed on a UPLC BEH C18 column (2.1 × 100 mm i.d.,1.7 µm) with mobile phase of methanol-water (containing 2 mmol/L ammonium acetate and 0.1% formic acid; 90:10, v/v). The detection was performed in positive selected reaction monitoring mode. Each plasma sample was chromatographed within 3 min. The linear calibration curves were obtained in the concentration range of 0.0944-189 ng/mL (r ≥ 0.99) for oxybutynin and 0.226-18.0 ng/mL (r ≥ 0.99) for N-desethyl oxybutynin. The intra- and inter-day precision (relative standard deviation) values were not more than 14% and the accuracy (relative error) was within ±7.6%. The method described was superior to previous methods for the quantitation of oxybutynin with three product ions and was successfully applied to a pharmacokinetic study of oxybutynin and its active metabolite N-desethyl oxybutynin in rat plasma after transdermal administration.


Subject(s)
Mandelic Acids/blood , Mandelic Acids/pharmacokinetics , Transdermal Patch , Animals , Chromatography, High Pressure Liquid/methods , Limit of Detection , Linear Models , Male , Mandelic Acids/administration & dosage , Mandelic Acids/chemistry , Rats , Rats, Wistar , Reproducibility of Results , Tandem Mass Spectrometry/methods
15.
J Chromatogr Sci ; 56(3): 225-232, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29206914

ABSTRACT

A specific, rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method was developed for simultaneous determination of vinpocetine (VP) and its active metabolite, apovincaminic acid (AVA) in rat brain regions, such as hypothalamus, striatum, cortex, cerebellum and hippocampus. Phenacetin was used as internal standard (IS). Brain tissue samples were precipitated protein by using 500 µL methanol. The separation was achieved on a Waters ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 µm), using a methanol-water gradient elution at the flow rate of 0.20 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode via positive electrospray ionization source (ESI). The quantification was operated using the transitions of m/z 351 → m/z 280 for VP, m/z 323 → m/z 280 for AVA and m/z 180 → m/z 110 for IS, respectively. The calibration curve was linear in concentration range from 0.100 to 60.0 ng/mL for VP and 0.103 to 6.18 ng/mL for AVA. The intra-day and inter-day precision (relative standard deviation, RSD) values were within 11.8%, the accuracy (relative error, RE) was from -1.7% to 3.0% for VP and 2.7% to 9.5% for AVA at all the three concentration levels of quality-control (QC) samples. The improved UPLC-MS/MS method was specific, rapid and sensitive, which was further successfully applied to simultaneous determination of VP and AVA in different rat brain regions after intragastric administration of 4 mg/kg VP. It was indicated that VP could be eliminated quickly in brain, while the elimination of AVA was slow and it could be maintained for more than 12 h in brain. Moreover, it was found that the contents of VP and AVA were much higher in the hypothalamus, striatum and cortex than those in the cerebellum and hippocampus, which verified the distribution characteristics of VP and AVA in different brain regions from the point of quantitation in rats.


Subject(s)
Brain/metabolism , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Vinca Alkaloids/analysis , Vinca Alkaloids/pharmacokinetics , Animals , Brain Chemistry , Linear Models , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution , Vinca Alkaloids/chemistry
16.
Article in English | MEDLINE | ID: mdl-29132024

ABSTRACT

A HILIC-UHPLC-MS/MS untargeted urinary metabonomic method combined with quantitative analysis of five potential polar biomarkers in rat urine was developed and validated, to further understand the anti-osteoporosis effect of Gushudan(GSD) and its mechanism on prednisolone-induced osteoporosis(OP) rats in this study. The metabolites were separated and identified on Waters BEH HILIC (2.1mm×100mm, 1.7µm) column using the Waters ACQUITY™ ultra performance liquid chromatography system (Waters Corporation, Milford, USA) coupled with a Micromass Quattro Micro™ API mass spectrometer (Waters Corp, Milford, MA, USA). Principal component analysis (PCA) was used to identify potential biomarkers. Primary potential polar biomarkers including creatinine, taurine, betaine, hypoxanthine and cytosine, which were related to energy metabolism, lipid metabolism and amino acid metabolism, were found in the untargeted metabonomic research. Moreover, these targeted biomarkers were further separated and quantified in multiple-reaction monitoring (MRM) with positive ionization mode, using tinidazole as internal standard (I.S.). Good linearities (r>0.99) were obtained for all the analytes with the low limit of quantification from 1.00 to 12.8µg/mL. The relative standard deviation (RSD) of the intra-day and inter-day precisions were within 15.0% and the accuracy ranged from -14.3% to 13.5%. The recovery was more than 85.0%. And the validated method was successfully applied to investigate the urine samples of the control group, prednisolone-induced osteoporosis model group and Gushudan-treatment group in rats. Compared to the control group, the level of creatinine, taurine, betaine, hypoxanthine and cytosine in the model group revealed a significant decrease trend (p<0.05), while the Gushudan-treatment group showed no statistically differences by an independent sample t-test. This paper provided a better understanding of the therapeutic effect and mechanism of GSD on prednisolone-induced osteoporosis rats.


Subject(s)
Biomarkers/urine , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacology , Metabolome/drug effects , Metabolomics/methods , Tandem Mass Spectrometry/methods , Administration, Oral , Animals , Biomarkers/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacokinetics , Limit of Detection , Linear Models , Male , Principal Component Analysis , Rats , Rats, Wistar , Reproducibility of Results
17.
Nat Commun ; 8: 14161, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28102207

ABSTRACT

Protein homeostasis is critical for health and lifespan of animals. However, the mechanisms for controlling protein feeding remain poorly understood. Here we report that in Drosophila, protein intake-induced feeding inhibition (PIFI) is specific to protein-containing food, and this effect is mediated by a fat body (FB) peptide named female-specific independent of transformer (FIT). Upon consumption of protein food, FIT expression is greatly elevated. Secreted FIT peptide in the fly haemolymph conveys this metabolic message to the brain, thereby promoting the release of Drosophila insulin-like peptide 2 (DILP2) and suppressing further protein intake. Interestingly, Fit is a sexually dimorphic gene, and consequently protein consumption-induced insulin release, as well as protein feeding behaviour, are also dimorphic between sexes. Thus, our findings reveal a protein-specific satiety hormone, providing important insights into the complex regulation of feeding decision, as well as the sexual dimorphism in feeding behaviour.


Subject(s)
Drosophila Proteins/metabolism , Feeding Behavior , Satiation , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Fat Body/metabolism , Gene Expression Regulation/physiology
18.
Zhonghua Xin Xue Guan Bing Za Zhi ; 43(7): 609-13, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26420322

ABSTRACT

OBJECTIVE: To identify the effect of ethanol and its metabolite acetaldehyde on acetylcholine-sensitive K(+) channel Kir3.1 protein expression, and explore the potential role of this channel and acetaldehyde in arrhythmia caused by acute alcoholic intoxication. METHODS: Primary atrial cardiomyocytes were isolated from 150 newborn SD rats by typsin and type II collagenase, cultured and troponin I was determined by immunofluorescence. Cell survival in 200-800 mmol/L ethanol or 50-500 µmol/L acetaldehyde treated cells for 24 hours was measured by CCK-8 assay to determine the concentration of ethanol and acetaldehyde for inducing apoptosis in cardiomyocytes. The highest non-apoptotic concentration (200 mmol/L) of ethanol and acetaldehyde (100 µmol/L) was used in the main study. Kir3.1 protein expression was detected by Western blot. RESULTS: (1) Cellular immunofluorescence results showed that cultured cells are cardiomyocytes, and more than 90% of these cells are troponin I positive. (2) CCK-8 assay demonstrated that the survival rate of cardiomyocytes in the groups treated by ethanol over 400 mmol/L for 24 hours or acetaldehyde over 400 µmol/L was significantly lower than that of the control group (P < 0.05), while the survival rate was similar in cardiomyocytes treated by ethanol less than 200 mmol/L or acetaldehyde less than 350 µmol/L for 24 hours and the control group (P > 0.05). (3) Western-bolt assay revealed that ethanol and acetaldehyde treatment for 24 hours upregulated Kir3.1 protein expression in primary atrial cardiomyocytes of newborn SD rats by (44.52 ± 23.07)% and (45.04 ± 22.01)% respectively compared with the control group (all P < 0.01). CONCLUSIONS: Acute ethanol and acetaldehyde treatment could significantly upregulate the protein expression of acetylcholine-sensitive K(+) channel Kir3.1, this might serve as a potential mechanism for arrhythmia caused by acute alcoholic intoxication.


Subject(s)
Acetaldehyde/metabolism , Ethanol/pharmacology , G Protein-Coupled Inwardly-Rectifying Potassium Channels/drug effects , Myocytes, Cardiac/drug effects , Acetylcholine , Alcoholic Intoxication/metabolism , Animals , Apoptosis , Cells, Cultured , Heart Atria , Rats , Rats, Sprague-Dawley
20.
Ann Bot ; 111(6): 1139-53, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23589634

ABSTRACT

BACKGROUND AND AIMS: Phosphorus deficiency is a major limiting factor for crop yield worldwide. Previous studies revealed that PHR1 and it homologues play a key role in regulating the phosphate starvation response in plants. However, the function of PHR homologues in common wheat (Triticum aestivum) is still not fully understood. The aim of the study was to characterize the function of PHR1 genes in regulating phosphate signalling and plant growth in wheat. METHODS: Wheat transgenic lines over-expressing a wheat PHR1 gene were generated and evaluated under phosphorus-deficient and -sufficient conditions in hydroponic culture, a soil pot trial and two field experiments. KEY RESULTS: Three PHR1 homologous genes Ta-PHR1-A1, B1 and D1 were isolated from wheat, and the function of Ta-PHR1-A1 was analysed. The results showed that Ta-PHR1-A1 transcriptionally activated the expression of Ta-PHT1.2 in yeast cells. Over-expressing Ta-PHR1-A1 in wheat upregulated a subset of phosphate starvation response genes, stimulated lateral branching and improved phosphorus uptake when the plants were grown in soil and in nutrient solution. The data from two field trials demonstrated that over-expressing Ta-PHR1-A1 increased grain yield by increasing grain number per spike. CONCLUSIONS: TaPHR1 is involved in phosphate signalling in wheat, and was valuable in molecular breeding of crops, with improved phosphorus use efficiency and yield performance.


Subject(s)
Phosphorus/metabolism , Plant Proteins/metabolism , Triticum/metabolism , Arabidopsis , Biomass , Gene Expression , Molecular Sequence Data , Plant Proteins/genetics , Seeds/growth & development , Sequence Analysis, DNA , Transcriptional Activation , Triticum/genetics , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...