Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 944: 173905, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38871330

ABSTRACT

Iodo-phenolic disinfection byproducts (DBPs) widely occur in disinfected water, posing potential risks to human health and the ecosystem as they possess higher toxicity than the bromo- and chloro-analogs. Herein, we elucidated the catalytic hydrodehalogenation (HDH) activity and selectivity of polyiodinated phenolic DBPs on supported noble metal catalysts at ambient conditions. Both 2,4,6-triiodophenol and 4-chloro-2,6-diiodophenol can be efficiently eliminated on Pd/TiO2 and Rh/TiO2 within 20 min, with Pd/TiO2 exhibiting higher turnover frequency. The HDH reactions proceeded in both stepwise and concerted pathways on Pd/TiO2, while they were dominantly stepwise on Rh/TiO2. Experimental results and theoretical calculations revealed that the HDH selectivity depends on the position and the bond energy of halo-substitutions. For the HDH of 2,4,6-triiodophenol, the para-substituted iodine was more favorable to be dehalogenated than the ortho-substituted ones due to the steric hindrance of the hydroxyl group. For the HDH of 4-chloro-2,6-diiodophenol, the ortho-substituted iodine was removed before the para-substituted chlorine as CI bond had higher reactivity than CCl bond. Significant catalyst deactivation was observed for the HDH of 4-chloro-2,6-diiodophenol on Pd/TiO2 due to iodine poisoning, resulting in 4-chlorophenol as the dominant product. In contrast, Rh/TiO2 can completely hydrodehalogenate 4-chloro-2,6-diiodophenol into cyclohexanone with little iodine poisoning. Our results suggest that HDH is an efficient process for abating iodo-phenolic DBPs. Rh/TiO2 is a more promising HDH catalyst for iodinated DBP removal than Pd/TiO2 with excellent resistance to iodine poisoning.

2.
ACS Nano ; 18(13): 9535-9542, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38522086

ABSTRACT

Writing spatial information on ultrafast all-optical switching is essential for constructing ultrafast processing units in photonic applications, such as optical communication and computing networks. However, most methods ignore the fabrication and imaging of controllable switching area, limiting its spatial information and the further design in ultrafast devices. Here, we propose a method to spatially write in ultrafast all-optical switching based on MAPbI3 perovskite with nanocone structure and visualize the switching effect in arbitrary designed area. Due to the light confinement effect of nanocone fabrication using a fs laser, the light is strongly absorbed by perovskite and reach saturable absorption. It leads to ultrafast broadband transmittance change with 25 fs switching time and 10% modulation depth in nanocone perovskite area. Our preparation method offers high efficiency, performance, and flexibility for the spatial writing of ultrafast all-optical switching, which is promising for developing ultrafast all-optical networks and the next generation of communication technology.

3.
Cancer Res ; 83(10): 1611-1627, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36939397

ABSTRACT

Cancer stem-like cells (CSC) play pivotal roles in both chemoresistance and recurrence of many cancer types, including urothelial bladder cancer (UBC). In addition to intrinsic signaling pathways, extracellular cues from the tumor microenvironment (TME) are indispensable for the maintenance of CSCs. To better understand the mechanisms involved in TME-mediated generation and support of UBC CSCs, we focused on the role of cancer-associated fibroblasts (CAF) in this study. Overexpression of miR-146a-5p in CAFs promoted CAF-to-UBC cell interactions, cancer stemness, and chemoresistance to treatment with gemcitabine and cisplatin. Mechanistically, miR-146-5p upregulated SVEP1 in CAFs by enhancing the recruitment of transcriptional factor YY1. Meanwhile, by targeting the 3'UTR of mRNAs of ARID1A and PRKAA2 (also known as AMPKα2) in UBC cells, CAF-secreted miR-146a-5p promoted cancer stemness and chemoresistance. Downregulation of ARID1A resulted in the inhibition of SOCS1 and subsequent STAT3 activation, and downregulated PRKAA2 led to the activation of mTOR signaling. Elevated levels of exosomal miR-146a-5p in the serum of patients with UBC were correlated with both tumor stage and relapse risk. These findings altogether indicate that CAF-derived miR-146a-5p can promote stemness and enhance chemoresistance in UBC. Exosomal miR-146a-5p may be a biomarker of UBC recurrence and a potential therapeutic target. SIGNIFICANCE: The tumor-stromal cross-talk mediated by cancer-associated fibroblast-derived miR-146a-5p fosters cancer stem cell niche formation and cancer stemness to drive chemoresistance in urothelial bladder cancer.


Subject(s)
Cancer-Associated Fibroblasts , MicroRNAs , Urinary Bladder Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cancer-Associated Fibroblasts/metabolism , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Neoplasm Recurrence, Local , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Cell Proliferation , Tumor Microenvironment
4.
Front Cell Dev Biol ; 10: 931132, 2022.
Article in English | MEDLINE | ID: mdl-36092699

ABSTRACT

Sialylation aberration has been implicated in lung cancer development by altering signaling pathways. Hence, it is urgent to identify key sialyltransferases in the development of lung adenocarcinoma (LUAD), which is a common malignant subtype of non-small cell lung cancer. Herein, by systematically investigating the expression levels of ST3GAL family members in several public databases, we consistently found the frequent downregulation of ST3GAL6 in LUAD samples. Its downregulation is significantly negatively associated with stage, and significantly reduced in proximal-proliferative molecular subtype and predicts poor clinical outcomes. By protein-protein interaction network analysis and validation, we found that ST3GAL6 deficiency promotes LUAD cell invasiveness with the activated EGFR/MAPK signaling, accompanied by the elevated expression levels of matrix metalloproteinases 2 and 9, which can be partially reversed by EGFR inhibitor, gefitinib. Additionally, the ST3GAL6 level was positively regulated by ST3GAL6-AS1, an antisense long non-coding RNA to its host gene. The downregulation of ST3GAL6-AS1 also heralds a worse prognosis in LUAD patients and promotes LUAD cell invasiveness, recapitulating the function of its host gene, ST3GAL6. Altogether, ST3GAL6-AS1-regulated ST3GAL6 is a frequently downregulated sialyltransferase in LUAD patients and negatively regulates EGFR signaling, which can serve as a promising independent prognostic marker in LUAD patients.

5.
ACS Appl Mater Interfaces ; 14(34): 39591-39600, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35996852

ABSTRACT

Nonlinear optical properties have been extensively studied due to their promising nonlinear effects and various applications. With ultrashort duration and ultrahigh intensity, a femtosecond laser can fabricate various superior-quality micro-/nanostructures to improve the nonlinearity of materials, which are promising for stable and high-performance nonlinear devices. In this contribution, yttria-stabilized zirconia (YSZ) with fs laser-induced micro-/nanostructures is demonstrated to exhibit unique anisotropic light-material interaction and nonlinear optical response on [100], [110], and [111] planes. Time-resolved reflectivity of YSZ after fs laser excitation is investigated by a pump-probe experiment, which is consistent with simulations through the plasma model combined with a two-temperature model. These results indicate two early ablation mechanisms: Coulomb explosion and melting. Anisotropic crack structures are formed due to thermal stress, which is always ignored in fs laser fabrication and is verified by Raman mapping and analysis of slip systems on different crystal planes. Through the z-scan measurement, the nonlinear absorption (NLA) of crack structures is effectively improved, and a nearly 18 times enhancement of the NLA coefficient is acquired in [100] samples, while a 2 times enhancement in [110] and [111] samples. Such great enhancement of NLA is mainly due to the abundant presence of crack structures and the increase of fs laser-induced oxygen vacancies in [100] YSZ. These results provide a potential way of utilizing fs laser to improve the nonlinearity for the technological development in nonlinear devices.

6.
Chemosphere ; 288(Pt 3): 132641, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34687684

ABSTRACT

The hepatotoxicity of Microcystin-LR (MC-LR) is mainly caused by its Adda moiety. In this study, we used TiO2-supported Pd catalysts to selectively hydrogenate the CC bonds in the Adda moiety, achieving rapid detoxification of MC-LR in water under ambient conditions. MC-LR was removed within 5 min by catalytic hydrogenation on Pd(1.0)/TiO2 with a catalyst dosage normalized rate constant of 1.3 × 10-2 L mgcat-1 min-1, significantly more efficient than other catalytic treatment methods. The reactions proceeded in a highly selective manner towards catalytic hydrogenation at the CC bond of the Mdha moiety and subsequently the conjugated double bond of the Adda moiety, yielding two intermediates and one final product. Upon catalytic hydrogenation for 30 min on Pd(0.07)/TiO2, the toxicity of MC-LR (assessed by protein phosphatase 2A activity assay) drastically decreased by 90.8%, demonstrating effective detoxification. The influence of catalyst support, Pd content, initial MC-LR concentration, reaction pH, and catalytic stability were examined. Surface adsorption and the cationic Pd played a crucial role in the reaction kinetics. Our results suggest that catalytic hydrogenation is a highly effective and safe strategy for detoxifying MC-LR by selective reactions.


Subject(s)
Water Purification , Hydrogenation , Marine Toxins , Microcystins/metabolism , Oxidation-Reduction , Titanium
7.
Cancer Res ; 81(22): 5720-5732, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34479964

ABSTRACT

Hypercholesterolemia is a prevalent metabolic disorder that has been implicated in the development of steroid-targeted cancers. However, the link between hypercholesterolemia and urinary bladder cancer (UBC), a non-steroid-targeted cancer, remains unresolved. Here we show that diet-induced and Ldlr deficiency-induced hypercholesterolemia enhances both UBC stemness and progression. Inhibition of intestinal cholesterol absorption by ezetimibe reversed diet-induced hypercholesterolemia and cancer stemness. As a key component in hypercholesterolemic sera, oxidized low-density lipoprotein (ox-LDL), but not native low-density lipoprotein-cholesterol or metabolite 27-hydroxycholesterol, increased cancer stemness through its receptor CD36. Depletion of CD36, ectopic expression of an ox-LDL binding-disabled mutant form of CD36(K164A), and the neutralization of ox-LDL and CD36 via neutralizing antibodies all reversed ox-LDL-induced cancer stemness. Mechanistically, ox-LDL enhanced the interaction of CD36 and JAK2, inducing phosphorylation of JAK2 and subsequently activating STAT3 signaling, which was not mediated by JAK1 or Src in UBC cells. Finally, ox-LDL levels in serum predicted poor prognosis, and the ox-LDLhigh signature predicted worse survival in patients with UBC. These findings indicate that ox-LDL links hypercholesterolemia with UBC progression by enhancing cancer stemness. Lowering serum ox-LDL or targeting the CD36/JAK2/STAT3 axis might serve as a potential therapeutic strategy for UBCs with hypercholesterolemia. Moreover, elevated ox-LDL may serve as a biomarker for UBC. SIGNIFICANCE: This study demonstrates how hypercholesterolemia-induced oxidized LDL promotes urinary bladder cancer stemness via a CD36/STAT3 signaling axis, highlighting these factors as biomarkers and potential therapeutic targets of aggressive disease.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Hypercholesterolemia/complications , Lipoproteins, LDL/metabolism , Neoplastic Stem Cells/pathology , Urinary Bladder Neoplasms/pathology , Animals , Apoptosis , Biomarkers, Tumor/genetics , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cell Proliferation , Humans , Hypercholesterolemia/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Lipoproteins, LDL/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Neoplastic Stem Cells/metabolism , Receptors, LDL/physiology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Tumor Cells, Cultured , Urinary Bladder Neoplasms/etiology , Urinary Bladder Neoplasms/metabolism , Xenograft Model Antitumor Assays
8.
Int J Mol Sci ; 22(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810508

ABSTRACT

Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.


Subject(s)
Drug Resistance, Bacterial/genetics , Microbial Consortia , Populus/genetics , Populus/microbiology , Rhizosphere , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Metagenome , Metagenomics , Plant Roots/microbiology , Soil , Soil Microbiology , Trees/genetics
9.
ACS Appl Mater Interfaces ; 13(6): 7688-7697, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33550795

ABSTRACT

The third-generation semiconductors are the cornerstone of the power semiconductor leap forward and have attracted much attention because of their excellent properties and wide applications. Meanwhile, femtosecond laser processing as a convenient method further improves the performance of the related devices and expands the application prospect. In this work, an approximate 3 times improvement of the internal quantum efficiency (IQE) and a 5.5 times enhancement of the photoluminescence (PL) intensity were achieved in the GaN film prepared using a one-step femtosecond laser fabrication method. Three types of final micro/nanostructures were found with different femtosecond laser fluences, which could be attributed to the decomposition, melting, bubble nucleation, and phase explosion of GaN. The mechanisms of the microbump structure formation and enhancement of IQE were studied experimentally by the time-resolved reflection pump-probe technique, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Simulations for the laser-GaN interaction have also been performed to ascertain the micro/nanostructure formation principle. These results promote the potential applications of femtosecond lasers on GaN and other wide band gap semiconductors, such as UV-light-emitting diodes (LEDs), photodetectors, and random lasers for use in sensing and full-field imaging.

10.
Ecotoxicol Environ Saf ; 208: 111677, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396009

ABSTRACT

CH3NH3PbI3 is one of the most widely studied and most promising photoelectric conversion materials for large-scale application. However, once it is discharged into the aquatic environment, it will release a variety of lethal substances to the aquatic organisms. Herein, two typical aquatic pollution indicators, Scenedesmus obliquus (a typical phytoplankton) and Daphnia magna (a typical zooplankton), were used to assess the acute effects of CH3NH3PbI3 perovskite on aquatic organisms. The results showed that, when the initial CH3NH3PbI3 perovskite level (CPL) was 40 mg L-1 or higher, the growth of S. obliquus would be remarkably inhibited with significant decreases of chlorophyll content and protein content. And when the CPL was over 5 mg L-1, the survival of D. magna would be notably threatened. Specifically, the 72 h EC-50 of CH3NH3PbI3 perovskite to S. obliquus was calculated as 37.21 mg L-1, and the 24 h LC-50 of this perovskite to D. magna adults and neonates were calculated as 37.53 mg L-1 and 18.55 mg L-1, respectively. Moreover, remarkably solution pH declination and large amounts of lead bio-accumulation was observed in the both acute experiments, which could be the main reasons causing the above acute effects. Considering the strong acute effects of these CH3NH3PbI3 perovskite materials and their attractive application prospect, more attentions should be paid on their harmness to the environment.


Subject(s)
Calcium Compounds/toxicity , Daphnia/drug effects , Lead/toxicity , Methylamines/toxicity , Oxides/toxicity , Scenedesmus/drug effects , Titanium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Calcium Compounds/chemistry , Humans , Lead/chemistry , Methylamines/chemistry , Oxides/chemistry , Surface Properties , Titanium/chemistry , Toxicity Tests, Acute , Water Pollutants, Chemical/chemistry
11.
Antonie Van Leeuwenhoek ; 113(11): 1689-1698, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32955707

ABSTRACT

A novel Gram-negative, aerobic, motile and short rod-shaped bacterium with exopolysaccharides production, designated as LZ-4T, was isolated from cultivable phycosphere microbiota of harmful algal blooms-causing marine dinoflagellate Alexandrium catenella LZT09 which produces paralytic shellfish poisoning toxins. Strain LZ-4T was able to use thiosulfate (optimum concentration 10 mM) as energy source for bacterial growth. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain LZ-4T belonged to the genus Limnobacter, showing high 16S rRNA gene sequences similarities with L. thiooxidans DSM 13612T (99.4%), L. humi NBRC 11650T (98.2%) and L. litoralis NBRC 105857T (97.2%), respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between LZ-4T and L. thiooxidans DSM 13612T were 78.9 and 21.9%, respectively. Both values were far lower than the thresholds (95-96% for ANI and 70% for dDDH) generally accepted for new species delineation. The respiratory quinone of strain LZ-4T was Q-8. The dominant cellular fatty acids were determined as summed feature 3 (C16:1 ω6c/ω7c), summed feature 8 (C18:1 ω6c/ω7c) and C16:0. Polar lipids profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids and three unidentified polar lipids. The genomic DNA G+C content of strain LZ-4T was 52.5 mol%. Based on polyphasic characterization, strain LZ-4T represents a novel species of the genus Limnobacter, for which the name Limnobacter alexandrii sp. nov. is proposed. The type strain is LZ-4T (=CCTCC AB 2019004T =KCTC 72281T).


Subject(s)
Burkholderiaceae/classification , Burkholderiaceae/isolation & purification , Dinoflagellida/microbiology , Heterotrophic Processes , Microbiota , Thiosulfates/metabolism , Bacterial Typing Techniques , Burkholderiaceae/genetics , Burkholderiaceae/metabolism , DNA, Bacterial/genetics , Dinoflagellida/genetics , Dinoflagellida/pathogenicity , Fatty Acids/analysis , Oxidation-Reduction , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Light Sci Appl ; 9: 80, 2020.
Article in English | MEDLINE | ID: mdl-32411365

ABSTRACT

Numerous valuable studies on electron dynamics have focussed on the extraordinary properties of molybdenum disulfide (MoS2); however, most of them were confined to the level below the damage threshold. Here the electron dynamics of MoS2 under intense ultrafast laser irradiation was investigated by experiments and simulations. Two kinds of ablation mechanisms were revealed, which led to two distinct types of electron dynamics and final ablation morphology. At a higher fluence, the emergence of superheated liquid induced a dramatic change in the transient reflectivity and micro-honeycomb structures. At a lower fluence, the material was just removed by sublimation, and the ablation structure was relatively flat. X-ray photoelectron spectroscopic (XPS) measurements demonstrated that thermal decomposition only occurred at the higher fluence. Furthermore, a theoretical model was developed to deeply reveal the ultrafast dynamics of MoS2 ablation. The simulation results were in good agreement with the temporal and spatial reflectivity distribution obtained from the experiment. The electron and lattice temperature evolution was also obtained to prove the ablation mechanism. Our results revealed ultrafast dynamics of MoS2 above the damage threshold and are helpful for understanding the interaction mechanism between MoS2 and intense ultrafast lasers, as well as for MoS2 processing applications.

13.
BMC Complement Med Ther ; 20(1): 150, 2020 May 16.
Article in English | MEDLINE | ID: mdl-32416730

ABSTRACT

BACKGROUND: Our previous study revealed the extract from the bark of an Amazonian tree Pao Pereira can suppress benign prostatic hyperplasia (BPH) in a rat model. Herein, we examined its inhibitory effects on human BPH cells and dissect its molecular mechanism. METHODS: We applied Pao extract to human BPH epithelial BPH-1 and prostate myofibroblast WPMY-1 cells. Cell viability, apoptosis and immunoblotting were performed, followed by gene expression profiling and gene set enrichment analysis (GSEA) to detect the differentially expressed genes and signaling pathway induced by Pao extract. Human ex vivo BPH explant organ culture was also used to examine the effects of Pao extract on human BPH tissues. RESULTS: Pao extract treatment inhibited viability and induced apoptosis in human BPH-1 and WPMY-1 cells. Gene expression profiling and the following validation indicated that the expression levels of pro-apoptotic genes (eg. PCDC4, CHOP and FBXO32) were induced by Pao extract in both two cell lines. GSEA further revealed that Pao extract treatment was negatively associated with the activation of NFκB signaling. Pao extract suppressed the transcriptional activity of NFκB and down-regulated its target genes involved in inflammation (CXCL5, CXCL6 and CXCL12) and extracellular matrix (ECM) remodeling (HAS2, TNC and MMP13) in both cultured cells and human ex vivo BPH explants. CONCLUSION: In both BPH epithelial and stromal cells, Pao extract induces apoptosis by upregulating the pro-apoptotic genes and inhibiting the inflammation-associated NFκB signaling via reducing phosphorylation of NFκB subunit RelA. Our data suggest that Pao extract may be a promising phytotherapeutic agent for BPH.


Subject(s)
Apocynaceae/chemistry , Apoptosis/drug effects , NF-kappa B/metabolism , Plant Extracts/pharmacology , Prostatic Hyperplasia/drug therapy , Apoptosis/genetics , Cell Line , Humans , Male , Plant Bark/chemistry , Prostatic Hyperplasia/genetics
14.
ACS Appl Mater Interfaces ; 12(14): 17070-17076, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32182031

ABSTRACT

We have explored an asymmetric optoelectronic response of an FAPb(I0.8Br0.2)3 (FA = formamidine) perovskite device irradiated by a femtosecond (fs) laser at different laser-fluence values. Photoluminescence (PL) spectra indicated a blue shift from 772 nm (1.606 eV) to 745 nm (1.664 eV) and more than 80% quenching of the irradiated perovskite. The blue shift of the PL spectra can be attributed to compositional variation, which was confirmed through elemental analysis and X-ray diffraction. Two distinct characteristic time constants 193-46 ps and 1.9-0.61 ns were obtained by using fs transient absorption spectroscopy. The fast one represents recombination at the interface, whereas the slow one represents band-to-band recombination in the interior of the grain. Interestingly, after the perovskite was irradiated by a femtosecond laser with an appropriate laser fluence (0.135 J/cm2), an asymmetric I-V characteristic was achieved, which should result from irreversible electric domain deflection. Due to the electron-phonon scattering induced by defects, the degree of asymmetry was sensitive to the illumination power. As the photosensitive asymmetric I-V characteristics have a bearing on its photoelectric properties, the findings would be of value in photodiode, memory, and other photoelectric devices.

15.
Acta Pharmacol Sin ; 41(5): 731-732, 2020 05.
Article in English | MEDLINE | ID: mdl-32081977

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Int Microbiol ; 23(3): 405-413, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31898031

ABSTRACT

This study investigated the performance and microbial communities of denitrifying biofilms on polyurethane foam coupled with various solid carbon sources of acid- and alkali-pretreated rice straw and rice husk. Results showed that acid and alkali-pretreated rice straw both had higher TOC release rates (0.041-0.685 mg g-1 day-1) than those of rice husk (0.019-0.160 mg g-1 day-1) over a month, while acid pretreatment of rice husk and rice straw had a much higher organics release rate than that of alkali pretreatment and non-pretreatment, respectively. Acid-pretreated rice straw achieved the most efficient TN removal performance (82.06 ± 3.65%) with the lower occurrences of NH4+-N during denitrification than that of alkali-pretreated rice straw (80.05 ± 4.12%) over more than a month operation. However, alkali pretreatment of rice husk demonstrated much more significantly efficient TN removal efficiency (80.39 ± 2.1%) than did acid pretreatment (69.59 ± 13.43%). MiSeq sequencing analysis showed that the four biofilm samples attached on polyurethane foam with the addition of pretreated rice straw or rice husk had a range of 13-15 differentially abundant phylum and 81-123 differentially abundant genera in comparison with biofilm without extra solid carbon sources, and a higher TN removal efficiency demonstrated more types of differentially abundant genera.


Subject(s)
Denitrification , Microbiota/genetics , Water Purification/methods , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Bacteria/metabolism , Biofilms/growth & development , Carbon/metabolism , DNA, Bacterial , Environmental Restoration and Remediation , Metagenomics , Nitrates/metabolism , Polyurethanes , RNA, Ribosomal, 16S/genetics
17.
RSC Adv ; 10(24): 14208-14216, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-35498490

ABSTRACT

Selective catalytic hydrogenation of p-chloronitrobenzene on Pt-based catalysts is a green and high-efficient way for p-chloroaniline production. However, supported monometallic Pt catalysts often exhibit undesirable p-chloroaniline selectivity. We herein reported supported Pt catalysts with N-doped carbon (NC) as an overcoating (Pt/Al2O3@NC) to overcome the disadvantage. Three Pt/Al2O3@NC catalysts with different NC coating amounts were prepared by in situ carbonization of an ionic liquid. For comparison, Al2O3 coated by NC and Pt/Al2O3 coated by SiO2 were also prepared. A combination characterization confirmed that the NC overcoating was successfully formed on Pt/Al2O3 surface and Pt particles were completely coated by NC layers when ion liquid amount increased to 25 µl per g catalyst. Due to the intimate contact of NC layers and Pt particles Pt-NC heterojunctions were effectively formed on the catalyst surface. For the catalytic hydrogenation of p-chloronitrobenzene, Pt/Al2O3@NC with 25 µl ionic liquid as the NC precursor exhibited 100% selectivity to p-chloroaniline at 100% conversion of p-chloronitrobenzene. A lower ionic liquid amount led to decreased selectivity to p-chloroaniline. Furthermore, no deactivation was observed on Pt/Al2O3@NC during 5 catalytic cycles. The findings in the study demonstrate that coating noble metal catalysts by N-doped carbon is a promising method to enhance the selectivity and stability for catalytic hydrogenation of p-chloronitrobenzene.

18.
J Hazard Mater ; 388: 121745, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31796356

ABSTRACT

In this work, we coated carbon nanotubes (CNT) supported Pt catalyst by conductive carbon layers (labelled as Pt/CNT@C) and the catalyst was further functionalized by surface oxidation (denoted as Pt/CNT@Oxi-C). The textural properties of the catalysts were extensively characterized and liquid phase catalytic hydrogenation reduction of Cu2+ was conducted. Results showed that Pt particles of Pt/CNT@C and Pt/CNT@Oxi-C were completely embedded beneath carbon overcoatings. Furthermore, contrary to Pt/CNT no CO chemisorption was observed on both Pt/CNT@C and Pt/CNT@Oxi-C, indicative of the absence of exposed Pt particles in carbon-coated Pt/CNT. Effective Cu2+ reduction and metallic Cu deposition by catalytic hydrogenation were achieved on catalyst surface. Surface oxidation of Pt/CNT@C resulted in increased surface wetting and functionality content, leading to noticeable enhancement in catalytic activity for Cu2+ reduction. Additionally, Cu2+ reduction on Pt/CNT@Oxi-C proceeded through the Langmuir-Hinshelwood model, suggesting that the reduction of Cu2+ adsorbed on catalyst surface was the rate-determining step. Carbonization of overcoatings exhibited a volcano-type relationship between carbonization temperature and catalytic activity of Pt/CNT@C for Cu2+ reduction. As for catalyst reuse, Pt/CNT lost 92 % of initial activity after five consecutive reaction cycles, whereas Pt/CNT@Oxi-C maintained a high catalytic activity without remarkable deactivation.

19.
J Nanosci Nanotechnol ; 20(6): 3348-3355, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31748026

ABSTRACT

In marine environment, alkaline phosphatase (ALP) is a nonspecific phosphatase with metal ions as its active site. Metal ions have different effects on ALP activity. Therefore, a probe that specifically detects ALP needs to be developed. In this paper, to eliminate the interference of acid phosphatase, we designed and synthesized a highly selective fluorescent probe CyP based on pH to detect ALP activity. The response mechanism of detecting ALP was explained. The photophysical properties, enzyme kinetics, stability, selectivity, and potential quantitative ability of the probe under different pH values were investigated. The effects of metal ions on the ALP activity of marine Chlorella vulgaris and Escherichia coli were also analyzed. Excessive metal ions such as Zn2+, Cu2+, Hg2+, Pb2+, and Cd2+ inhibit while Mn2+, Co2+, and alkaline-earth metal ions promote the ALP activity of Chlorella and E. coli.


Subject(s)
Chlorella vulgaris , Fluorescent Dyes , Alkaline Phosphatase , Escherichia coli , Metals
20.
Bioresour Technol ; 289: 121762, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31311731

ABSTRACT

In this work, glucose addition (0.7 g l-1) almost doubled hydrogen yield of Chlorella pyrenoidosa (121.1 ml l-1 vs 65.5 ml l-1), with a positive correlation between hydrogen production and glucose consumption (-0.977, P < 0.01). When the electrons transport from water photolysis to algal hydrogenase was inhibited, the hydrogen productivity declined by 21.1%; whereas it dramatically decreased by 70.9% when the algal nicotinamide adeninedinucleotide dehydrogenase (NADH) was inhibited. Therefore, in the presence of glucose, the electrons for algae based hydrogen production would be mainly from glucose glycolysis rather than water photolysis. Further deuterated-glucose trial indicated that the glucose might serve as an electron donor for algal hydrogenases. Finally, a tentative electron transport route from glucose to algal hydrogenase was proposed, hoping to provide more scientific direction for further algae-based hydrogen production improvement.


Subject(s)
Chlorella/metabolism , Hydrogen/metabolism , Hydrogenase/metabolism , Electron Transport , Electrons , Glucose/metabolism , Photolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...