Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
Ecotoxicol Environ Saf ; 279: 116495, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38820876

ABSTRACT

Abrus cantoniensis Hance (ACH) is an ancient Chinese medicine herb known for its therapeutic effects. This study investigated the potential protective effect of ACH against carbon tetrachloride (CCl4)-induced liver damage in mice. Fifty (n= 50) ICR mice were grouped into five groups. CCl4 was intraperitoneally injected into different mice groups: AM (CCl4 induced), AD (ACH-treated with 25 mg/kg), AZ (ACH-treated with 50 mg/kg), and AG (ACH-treated with100mg/kg) after every three days for a total of 31 days. The control group was denoted as AC. Additionally, groups AD, AZ, and AG received daily doses of ACH via gavage throughout the study period. According to our findings, ACH administration prominently mitigated liver pathological lesions and the increased liver index induced by CCl4 in mice (p < 0.05). Treatment with ACH resulted in a dose-dependent recovery of GSH-px, SOD, and CAT activities (p < 0.001). Moreover, the levels of TNF-α, MDA, and ALT showed significanlty decreasing trends with various doses of ACH (p < 0.001). Furthermore, 16 S rRNA gene sequencing demonstrated that ACH increased the abundance of beneficial genera of Comoclathris, Aureobasidium, and Kazachstania while decreased the presence of pathogenic genera such as Sporobolomyces and Filobasidium. Additionally, ACH treatment ameliorated the changes in liver metabolism due to CCl4 and enhanced the beneficial liver metabolites. In conclusion, ACH shows potential in protecting the liver against oxidative stress and inflammation caused by CCl4 exposure, possibly through its effects on gut microbiota and liver metabolism. Therefore, the use of ACH may offer an effective approach for alleviating CCl4-induced liver injury.

2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 597-605, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646746

ABSTRACT

We investigated the inter- and intra-species differences of leaf vein traits of three dominant Quercus species, Q. wutaishanica, Q. aliena var. acutiserrata, and Q. variabilis of Niubeiling (subtropical humid climate) and Taohuagou (warm temperate semi-humid climate), located in the eastern and western Qinling Mountains. The nine examined leaf vein traits included primary leaf vein width, secondary leaf vein width, mean fine vein width, primary vein density, fine vein density, vein areole diameter, areole density, 3D fine vein surface area, and fine vein volume. We further elucidated the influencing mechanisms and regulatory pathways of biotic and abiotic factors on leaf vein traits. The results showed that species identity had significant effects on eight out of nine leaf vein traits except 3D fine vein surface area, while habitat had significant effects on primary leaf vein width, secondary leaf vein width, vein areole diameter, fine vein density, and areole density. Altitude had significant effects on primary vein density, mean fine vein width, vein areole diameter, fine vein density and areole density. Habitat, tree species identity, and altitude had significantly interactive effects on primary leaf vein density, 3D fine vein surface area, and fine vein volume. There were significant differences in primary leaf vein width, mean fine vein width, areole density, 3D fine vein surface area, fine vein volume, primary vein density of Q. wutaishanica between the two studied habitats, but the differences were only found in secondary leaf vein width and areole density of Q. aliena var. acutiserrata and Q. variabilis. The examined leaf vein traits were influenced both by biotic and abiotic factors, with varying effect sizes. Among the biotic factors, petiole length, leaf length and width ratio had strong effect on leaf vein traits. Among the abiotic factors, climatic and soil factors had high effect size on vein traits, with the former being higher than the latter. Leaf vein traits were affected directly by biotic factors, but indirectly by abiotic factors (soil and climatic factors) via regulating biotic factors (leaf stoichiometry and leaf phenotypic traits).


Subject(s)
Ecosystem , Plant Leaves , Quercus , Quercus/anatomy & histology , Plant Leaves/anatomy & histology , China , Species Specificity , Altitude
3.
Drug Chem Toxicol ; : 1-15, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647114

ABSTRACT

Methylmercury (MeHg) exposure can cause nerve damage and mitochondrial dysfunction. Mitochondrial dysfunction is mainly mediated by mitochondrial biogenesis and mitochondrial dynamics disorders. Quercetin (QE) plays an important role in activating silencing information regulator 2 related enzyme 1 (SIRT1), and SIRT1 activates peroxisome-proliferator-activated receptor-γ co-activator 1α (PGC-1α), which can regulate mitochondrial biogenesis and mitochondrial dynamics. The main purpose of this study was to explore the alleviating effects of QE on MeHg-induced nerve damage and mitochondrial dysfunction. The results showed that QE could reduce the excessive production of reactive oxygen species (ROS) and the loss of membrane potential induced by MeHg. Meanwhile, QE activated SIRT1 activity and SIRT1/PGC-1α signaling pathway, improved mitochondrial biogenesis and fusion and reduced mitochondrial fission. In summary, we hypothesized that QE prevents MeHg-induced mitochondrial dysfunction by activating SIRT1/PGC-1α signaling pathway.

4.
Foods ; 13(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611335

ABSTRACT

The glutinous rice starch (GRS) regeneration process could lead to decreased product quality and shorter shelf life. The purpose of this study was to analyze the effect of an ethanol extract of tea (EET) on the regeneration properties of GRS. The microstructure of starch was determined via scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy was used to determine the microstructure of starch-polyphenol molecular groups, an X-ray diffraction (XRD) instrument was used to determine the starch crystal structure, a differential scanning calorimeter (DSC) was used to determine the thermodynamic properties of starch, and the inhibitory effect of EET on GRS regeneration was comprehensively evaluated. The effect of EET on the in vitro digestion properties of GRS was also determined. The results showed that the addition of EET in GRS resulted in an increase in solubility and swelling power and a decrease in crystallinity and ΔHr. Compared to the control group, when retrograded for 10 days, the ΔHr of GRS with 1%, 2.5%, 5%, and 10% addition of EET decreased by 34.61%, 44.53%, 52.93%, and 66.79%, respectively. Furthermore, the addition of EET resulted in a decrease in the content of RDS and an increase in the content of SDS and RS in GRS. It was shown that the addition of EET could significantly inhibit the retrogradation of GRS, improve the processability, and prolong the shelf life of GRS products.

5.
Sci Total Environ ; 924: 171653, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38485023

ABSTRACT

Microplastics (MPs) and perfluorinated compounds (PFAS) are widespread in the global ecosystem. MPs have the ability to adsorb organic contaminants such as perfluorooctane sulfonate (PFOS), leading to combined effects. The current work aims to explore the individual and combined toxicological effects of polystyrene (PS) and PFOS on the growth and nerves of the freshwater planarian (Dugesia japonica). The results showed that PS particles could adsorb PFOS. PS and PFOS impeded the regeneration of decapitated planarians eyespots, whereas the combined treatment increased the locomotor speed of intact planarians. PS and PFOS caused significant DNA damage, while co-treatment with different PS concentrations aggravated and attenuated DNA damage, respectively. Further studies at the molecular level have shown that PS and PFOS affect the proliferation and differentiation of neoblasts in both intact and regenerating planarians, alter the expression levels of neuronal genes, and impede the development of the nervous system. PS and PFOS not only disrupted the homeostasis of intact planarians, but also inhibited the regeneration of decapitated planarians. This study is the first to assess the multiple toxicity of PS and PFOS to planarians after combined exposure. It provides a basis for the environmental and human health risks of MPs and PFAS.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Planarians , Animals , Humans , Planarians/physiology , Microplastics/toxicity , Microplastics/metabolism , Plastics/metabolism , Polystyrenes/toxicity , Polystyrenes/metabolism , Ecosystem , Homeostasis , Fluorocarbons/toxicity , Fluorocarbons/metabolism
6.
Mar Pollut Bull ; 201: 116233, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457878

ABSTRACT

Green tides, a globally prevalent marine ecological anomaly observed in coastal regions, have received substantial attention. However, there is limited research on the burial of Ulva prolifera in sediments during the late stages of green tide outbreaks. This study investigates the effect of temperature on U. prolifera buried in sediment over 30 days. The measurements included the length, biomass, relative growth rate, chlorophyll composition and maximum quantum yield (Fv/Fm) of PS II at different stages. The results indicate that at -20 °C, numerous seedlings emerged after 14 days of recovery culture, suggesting the release of spores or gametes; survival was possible from -2 °C to 15 °C; but at 20 °C and 30 °C, all U. prolifera died. The U. prolifera buried in sediment during the late stage of green tide outbreaks may serve as one of the sources for the subsequent year's green tide eruption. This research provides insights into the origins of green tide outbreaks in the southern Yellow Sea.


Subject(s)
Edible Seaweeds , Eutrophication , Ulva , Temperature , Biomass , China
7.
World J Orthop ; 15(2): 192-200, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38464349

ABSTRACT

The effectiveness of platelet-rich plasma (PRP) for the treatment of Achilles tendon disorders still needs to be evaluated through a series of prospective studies, but genomic analysis can reveal the existence of complementary PRP treatment options. Based on the 96 platelet activation-related genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we performed Gene Ontology functional enrichment analysis and KEGG enrichment analysis, pathway correlation analysis, and enrichment mapping to determine the enrichment results of the gene set enrichment analysis and found that the cAMP signalling pathway may be the key to enhancing the effectiveness of PRP treatment. The cAMP signalling pathway interacts with the Rap1 signalling pathway and cGMP-PKG signalling pathway to mediate the entire pathophysiological process of Achilles tendon disease. Moreover, ADCY1-9 may be the key to the activation of the cAMP signalling network. Further based on the data in the Gene Expression Omnibus database, it was found that ADCY4 and ADCY7 may be the players that play a major role, associated with the STAT4-ADCY4-LAMA5 axis and the GRbeta-ADCY7-SEMA3C axis, which is expected to be a complementary target for enhancing the efficacy of PRP in the treatment of Achilles tendon disease.

8.
Stem Cell Res Ther ; 15(1): 55, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414053

ABSTRACT

BACKGROUND: Neural stem cells (NSCs), especially human NSCs, undergo cellular senescence characterized by an irreversible proliferation arrest and loss of stemness after prolonged culture. While compelling correlative data have been generated to support the oxidative stress theory as one of the primary determinants of cellular senescence of NSCs, a direct cause-and-effect relationship between the accumulation of oxidation-mediated damage and cellular senescence of NSCs has yet to be firmly established. Human SOD1 (hSOD1) is susceptible to oxidation. Once oxidized, it undergoes aberrant misfolding and gains toxic properties associated with age-related neurodegenerative disorders. The present study aims to examine the role of oxidized hSOD1 in the senescence of NSCs. METHODS: NSCs prepared from transgenic mice expressing the wild-type hSOD1 gene were maintained in culture through repeated passages. Extracellular vesicles (EVs) were isolated from culture media at each passage. To selectively knock down oxidized SOD1 in NSCs and EVs, we used a peptide-directed chaperone-mediated protein degradation system named CT4 that we developed recently. RESULTS: In NSCs expressing the hSOD1 from passage 5, we detected a significant increase of oxidized hSOD1 and an increased expression of biomarkers of cellular senescence, including upregulation of P53 and SA-ß-Gal and cytoplasmic translocation of HMGB1. The removal of oxidized SOD1 remarkably increased the proliferation and stemness of the NSCs. Meanwhile, EVs derived from senescent NSCs carrying the wild-type hSOD1 contained high levels of oxidized hSOD1, which could accelerate the senescence of young NSCs and induce the death of cultured neurons. The removal of oxidized hSOD1 from the EVs abolished their senescence-inducing activity. Blocking oxidized SOD1 on EVs with the SOD1 binding domain of the CT4 peptide mitigated its toxicity to neurons. CONCLUSION: Oxidized hSOD1 is a causal factor in the cellular senescence of NSCs. The removal of oxidized hSOD1 is a strategy to rejuvenate NSCs and to improve the quality of EVs derived from senescent cells.


Subject(s)
Amyotrophic Lateral Sclerosis , Neural Stem Cells , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Cellular Senescence , Mice, Transgenic , Neural Stem Cells/metabolism , Peptides , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics
9.
ACS Sens ; 9(2): 736-744, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38346401

ABSTRACT

The expression of microRNA (miRNA) changes in many diseases plays an important role in the diagnosis, treatment, and prognosis of diseases. Spinal cord injury (SCI) is a serious disease of the central nervous system, accompanied by inflammation, cell apoptosis, neuronal necrosis, axonal rupture, demyelination, and other pathological processes, resulting in impaired sensory and motor functions of patients. Studies have shown that miRNA expression has changed after SCI, and miRNAs participate in the pathophysiological process and treatment of SCI. Therefore, quantitative analysis and monitoring of the expression of miRNA were of great significance for the diagnosis and treatment of SCI. Through the SCI-related miRNA chord plot, we screened out miRNA-21-5p and miRNA-let-7a with a higher correlation. However, for traditional detection strategies, it is still a great challenge to achieve a fast, accurate, and sensitive detection of miRNA in complex biological environments. The most frequently used method for detecting miRNAs is polymerase chain reaction (PCR), but it has disadvantages such as being time-consuming and cumbersome. In this paper, a novel SERS sensor for the quantitative detection of miRNA-21-5p and miRNA-let-7a in serum and cerebrospinal fluid (CSF) was developed. The SERS probe eventually formed a sandwich-like structure of Fe3O4@hpDNA@miRNA@hpDNA@GNCs with target miRNAs, which had high specificity and stability. This SERS sensor achieved a wide range of detection from 1 fM to 1 nM and had a good linear relationship. The limits of detection (LOD) for miRNA-21-5p and miRNA-let-7a were 0.015 and 0.011 fM, respectively. This new strategy realized quantitative detection and long-term monitoring of miRNA-21-5p and miRNA-let-7a in vivo. It is expected to become a powerful biomolecule analysis tool and will provide ideas for the diagnosis and treatment of many diseases.


Subject(s)
MicroRNAs , Spinal Cord Injuries , Humans , Polymerase Chain Reaction , Limit of Detection , Prognosis , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/genetics
10.
Trials ; 25(1): 19, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167071

ABSTRACT

BACKGROUND: Intraoperative hypoxemia and postoperative pulmonary complications (PPCs) often occur in patients with one-lung ventilation (OLV), due to both pulmonary shunt and atelectasis. It has been demonstrated that individualized positive end-expiratory pressure (iPEEP) can effectively improve intraoperative oxygenation, increase lung compliance, and reduce driving pressure, thereby decreasing the risk of developing PPCs. However, its effect during OLV is still unknown. Therefore, we aim to investigate whether iPEEP ventilation during OLV is superior to 5 cmH2O PEEP in terms of intraoperative oxygenation and the occurrence of PPCs. METHODS: This study is a prospective, randomized controlled, single-blind, single-center trial. A total of 112 patients undergoing thoracoscopic pneumonectomy surgery and OLV will be enrolled in the study. They will be randomized into two groups: the static lung compliance guided iPEEP titration group (Cst-iPEEP Group) and the constant 5 cmH2O PEEP group (PEEP 5 Group). The primary outcome will be the oxygenation index at 30 min after OLV and titration. Secondary outcomes are oxygenation index at other operative time points, PPCs, postoperative adverse events, ventilator parameters, vital signs, pH value, inflammatory factors, and economic indicators. DISCUSSION: This trial explores the effect of iPEEP on intraoperative oxygenation during OLV and PPCs. It provides some clinical references for optimizing the lung protective ventilation strategy of OLV, improving patient prognosis, and accelerating postoperative rehabilitation. TRIAL REGISTRATION: www.Chictr.org.cn ChiCTR2300073411 . Registered on 10 July 2023.


Subject(s)
Lung , One-Lung Ventilation , Humans , Prospective Studies , Single-Blind Method , Lung/surgery , Positive-Pressure Respiration/adverse effects , Positive-Pressure Respiration/methods , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Postoperative Complications/epidemiology , One-Lung Ventilation/adverse effects , One-Lung Ventilation/methods , Randomized Controlled Trials as Topic
12.
Gene ; 907: 148190, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38246579

ABSTRACT

OBJECTIVES: To describe the clinical characteristics of Chinese cystic fibrosis (CF) patients and to investigate the variants of CFTR and their potential pathogenicity. STUDY DESIGN: Chinese patients with potential CF diagnosis were studied. Clinical data were reviewed retrospectively from medical records. Whole exome sequencing and genetic evaluation were conducted to explore potential gene variants. The disruption of the variants to protein structure and function was explored and validated using in vitro experiments and in silico analysis. RESULTS: Four patients were recruited to the study, three of them were diagnosed as CF, and one was diagnosed as CFTR-related disorder. The age at symptom onset for the patients in this study ranged from newborn to 6 years, while the age at diagnosis varied from 3 to 11 years. All four patients exhibited bilateral diffuse bronchiectasis with Pseudomonas aeruginosa infections, and three of them had malnutrition. Finger clubbing was observed in three patients, two of whom displayed mixed ventilatory dysfunction. The CFTR variants spectrum of Chinese children with CF differs from that of Caucasian. A total of six variants were identified, two of which were first reported (c.1219G > T [p.Glu407*] and c.1367delT [p.Ala457Leufs*12]). The nonsense variants c.1219G > T, c.1657C > T and c.2551C > T and the frameshift variant c.1367delT were predicted to introduce premature stop codon and produce shorten CFTR protein, which was also first validated by in vitro truncation assay in this study. The missense variant c.1810A > C was predicted to disrupt the function of the nucleotide-binding domain 1 (NBD1) in the CFTR protein. The splicing variant c.1766 + 5G > T caused skipping of exon 13 and damaged the integrity of CFTR protein. CONCLUSIONS: Our study expands the spectrum of phenotypes and genotypes for CF of Chinese origin, which differs significantly from that of Caucasian. Genetic analysis and counseling are crucial and deserve extensive popularization for the diagnosis ofCF in patients of Chinese origin.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Child , Infant, Newborn , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/diagnosis , Retrospective Studies , Frameshift Mutation , China , Mutation
13.
Brain Res ; 1827: 148761, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38211826

ABSTRACT

As an extremely dangerous environmental contaminant, methylmercury (MeHg) results in detrimental health effects in human brain nervous system, one of its main targets. However, as a developmental toxicant, the brain of offspring is vulnerable to MeHg during pregnancy and lactation exposure. Unfortunately, mechanisms of neurodevelopmental injuries induced by MeHg have not been fully elucidated. N-acetylcysteine (NAC) has been used for several decades as an antioxidant to antagonize oxidative stress. However, the molecular mechanisms of NAC alleviating MeHg-induced neurodevelopmental toxicity are not clear. Here, for evaluation of the dose-dependent effects of MeHg exposure on neurodevelopmental injuries of offspring, and the possible protective effects of NAC, the pregnant female mice were exposed to MeHg (4, 8, 12 mg/L, respectively) and NAC (50, 100, 150 mg/kg, respectively) from gestational day 1 (GD1) to postnatal day 21 (PND21). Our results indicated that administering MeHg caused behavioral impairment and neuronal injuries in the cerebral cortex of newborn mice. MeHg dose-dependently caused reactive oxygen species (ROS) overproduction and oxidative stress aggravation, together with expression of Nrf2, HO-1, Notch1, and p21 up-regulation, and CDK2 inhibition. NAC treatment dose-dependently antagonized MeHg-induced oxidative stress that may contribute to alleviating neurobehavioral and neurodevelopmental impairments. These results give insight into that NAC can protect against MeHg-induced neurodevelopmental toxicity by its antioxidation capacity.


Subject(s)
Acetylcysteine , Methylmercury Compounds , Humans , Pregnancy , Female , Animals , Mice , Acetylcysteine/pharmacology , Methylmercury Compounds/toxicity , Lactation , Antioxidants/pharmacology , Brain
14.
Neural Regen Res ; 19(8): 1741-1750, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38103240

ABSTRACT

Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.

15.
Mar Pollut Bull ; 199: 115944, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142666

ABSTRACT

Golden tide outbreak threatened the marine ecological environment. Sargassum horneri is a single dominant species of the Yellow Sea golden tide, which growth and development are affected by changes in sea water temperature. This study investigated the photosynthetic physiology of copper algae and found that the growth rate, chlorophyll a content, carotenoid content, Fv/Fm, and maximum electron transfer efficiency were significantly reduced, indicating that Sargassum horneri was under stress under high temperature. In this study, high-throughput sequencing was used to analyze the response mechanisms of photosynthesis-related genes in S. horneri under high temperature stress. The results showed that most of the photosynthesis-related genes in S. horneri were downregulated and photosynthesis was inhibited under high temperature stress. However, the expression levels of ferredoxin, ferredoxin-NADP reductase, light-harvesting protein complexes, and oxygen-evolving complex genes were significantly upregulated (P ≤ 0.05) after five days of high temperature treatment. This study found that photosynthesis related genes play a crucial role in regulating the photosynthetic response of S. horneri to high temperature stress.


Subject(s)
Sargassum , Temperature , Chlorophyll A , Photosynthesis , Seawater
16.
Curr Mol Med ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37921188

ABSTRACT

BACKGROUND: Airway remodeling is one of the reasons for severe steroidresistant asthma related to HMGB1/RAGE signaling or Th17 immunity. OBJECTIVE: Our study aims to investigate the relationship between the HMGB1/RAGE signaling and the Th17/IL-17 signaling in epithelial-mesenchymal transformation (EMT) of airway remodeling. METHODS: CD4+ T lymphocytes were collected from C57 mice. CD4+ T cell and Th17 cell ratio was analyzed by flow cytometry. IL-17 level was detected by ELISA. The Ecadherin and α-SMA were analyzed by RT-qPCR and immunohistochemistry. The Ecadherin, α-SMA, and p-Smad3 expression were analyzed by western blot. RESULTS: The HMGB1/RAGE signaling promoted the differentiation and maturation of Th17 cells in a dose-dependent manner in vitro. The HMGB1/RAGE signaling also promoted the occurrence of bronchial EMT. The EMT of bronchial epithelial cells was promoted by Th17/IL-17 and the HMGB1 treatment in a synergic manner. Silencing of RAGE reduced the signaling transduction of HMGB1 and progression of bronchial EMT. CONCLUSION: HMGB1/RAGE signaling synergistically enhanced TGF-ß1-induced bronchial EMT by promoting the differentiation of Th17 cells and the secretion of IL-17.

17.
Transl Stroke Res ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37987987

ABSTRACT

Sensitive and accurate methods for early detection of acute ischemic stroke (AIS) are essential for timely treatment and prognostic assessment of patients. In this study, we report a microfluidics-based ultrasensitive surface-enhanced Raman scattering (SERS) immunoassay device for the quantitative determination of multiplex biomarkers in AIS. By preparing 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) antibody-modified gold nanoparticles (AuNPs) on SERS devices as SERS probes, the biomarkers in whole blood of AIS were accurately captured and further visualized for SERS signal intensity quantitative analysis of six biomarkers in the blood samples. It is worth mentioning that the limit of detection (LOD) of the method can reach the level of fg/mL, with excellent sensitivity and selectivity. Meanwhile, the analytical comparison with ELISA method showed that the detection results of both methods were consistent, which verified the feasibility of the assembled device. The SERS immunoassay device detection provides a powerful strategy for the prediction, early diagnosis and dynamic monitoring of prognosis of AIS with a wide range of clinical practice prospects.

18.
Endocrinology ; 164(12)2023 11 02.
Article in English | MEDLINE | ID: mdl-37788569

ABSTRACT

Obesity is a process of fat accumulation due to the imbalance between energy intake and consumption. Long noncoding RNA (lncRNA) Hnscr is crucial for metabolic regulation, but its roles in lipid metabolism during obesity are still unknown. In this article, we found that the expression of Hnscr gradually decreased in adipose tissues of diet-induced obese mice. Furthermore, the deletion of Hnscr promoted an increase in body weight and adipose tissue weight by upregulating the expression of lipogenesis genes and downregulating lipolysis genes in inguinal white adipose tissue (iWAT) and brown adipose tissue. In vitro knockdown of Hnscr in adipocytes resulted in reduced lipolysis of adipocytes. Overexpression of Hnscr by adenovirus or drug mimics showed the opposite. Mechanistically, Hnscr regulated adipose lipid metabolism by mediating the cyclic adenosine monophosphate/protein kinase A signaling pathway. This study identifies the initial characterization of Hnscr as a critical modifier that regulates lipid metabolism, suggesting that lncRNA Hnscr is a potential target for treating obesity.


Subject(s)
Lipid Metabolism , RNA, Long Noncoding , Mice , Animals , Lipolysis , RNA, Long Noncoding/metabolism , Adipocytes/metabolism , Adipose Tissue, White/metabolism , Obesity/metabolism , Adipose Tissue, Brown/metabolism , Diet, High-Fat , Mice, Inbred C57BL
19.
Brain Stimul ; 16(6): 1576-1584, 2023.
Article in English | MEDLINE | ID: mdl-37838094

ABSTRACT

BACKGROUND: Meniere Disease is a clinical condition defined by hearing loss, tinnitus, and aural fullness symptoms, there are currently no any medications approved for its treatment. OBJECTIVE: To determine whether taVNS as an adjunctive therapy could relieve symptoms and improve the quality of life in patients with Meniere disease. METHODS: In this Single-center, single blind, randomized trial, participants were assigned to transcutaneous auricular vagus nerve stimulation (taVNS) group and sham taVNS group. The primary outcome measures comprised Tinnitus Handicap Inventory, Dizziness Handicap Inventory, Pure Tone Auditory, Visual analogue scale of aural fullness. Secondary outcome measures comprised the 36-Item Short Form Health Survey, video head impulse test, and the caloric test. RESULTS: After 12 weeks, the THI (-11.00, 95%CI, -14.87 to -7.13; P < 0.001), DHI (-47.26, 95%CI, -50.23 to -44.29; P < 0.001), VAS of aural fullness (-2.22, 95%CI, -2.95 to -1.49; P<0.01), and Pure Tone Thresholds (-7.07, 95%CI, -9.07 to -5.06; P<0.001) were significantly differed between the two groups. In addition, SF36(14.72, 95%CI, 11.06 to 18.39; P < 0.001), vHIT (RD, 0.26, 95 % CI, -0.44 to -0.08, RR, 0.43, 95 % CI, 0.22 to 0.83, P < 0.01), and the caloric test (RD, -0.24, 95 % CI, -0.43 to -0.04, RR, 0.66, 95 % CI, 0.44 to 0.95, P = 0.02) have significant difference between two group, respectively. CONCLUSIONS: These findings suggest that taVNS combined with Betahistine Mesylate relieve symptoms and improve the quality of life for patients with Meniere Disease. taVNS can be considered an adjunctive therapy in treatment of Meniere Disease. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05328895.


Subject(s)
Meniere Disease , Tinnitus , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Meniere Disease/therapy , Betahistine/therapeutic use , Single-Blind Method , Quality of Life , Vagus Nerve/physiology
20.
Photobiomodul Photomed Laser Surg ; 41(9): 490-500, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37738368

ABSTRACT

Objective: To determine whether photobiomodulation therapy (PBMT) by class IV Multiwave Locked System laser treatment as an adjunctive therapy could relieve symptoms in patients with Bell's palsy with a duration of greater than 8 weeks. Materials and methods: This nonrandomized controlled trial was conducted from January 2020 to December 2022. Patients were eligible if they had Bell's palsy with a duration of greater than 8 weeks at the out-patient department of otorhinolaryngology in Beijing Tongren Hospital. The control group consisted of patients recruited between January 1, 2020, and December 31, 2020. The PBMT group consisted of patients recruited between January 1, 2021, and December 31, 2022. In this study, the PBM used has a wavelength of 808 and 905 nm, 1.2 W power (808 nm is 1 W, 905 nm is 200 mW), continuous mode emission (808 nm) and pulsed mode emission (905 nm), 8.35 J/cm2 dosimetry, administered 3 times per week, 72 times of total treatment. The primary outcome measures included the House-Brackmann facial nerve grading system, the Sunnybrook facial grading system, and the Facial Clinimetric Evaluation Scale (FaCE). Secondary outcome measures comprised electroneurography, electromyography, and the blink reflex. Results: A total of 54 participants were included (27 in the control group and 27 in the photobiomodulation group). After 6 months, the House-Brackmann grading system [risk difference, -0.59, confidence interval (95% CI), -0.81 to -0.38, relative risk, 0.27, 95% CI, 0.13-0.56, p < 0.001], Sunnybrook facial grading system (21.14, 95% CI, 11.71-30.58; p < 0.001), and FaCE (-0.20, 95% CI, 0.41-0.02; p = 0.07) had significant difference between the two groups. Latency of ala nasi muscle (10.92, 95% CI, 5.58-16.27; p < 0.001) was not statistically significant after treatment compared with the control group; however, most of the electrophysiological examinations have significant difference between the two groups, respectively. Conclusions: The results of this study suggest that PBMT may relieve symptoms for patients with Bell's palsy with a duration of greater than 8 weeks. Trial Registration: ClinicalTrials.gov Identifier: NCT05585333.


Subject(s)
Bell Palsy , Facial Paralysis , Low-Level Light Therapy , Humans , Bell Palsy/radiotherapy , Phototherapy , Pain Management
SELECTION OF CITATIONS
SEARCH DETAIL
...