Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
bioRxiv ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38187551

ABSTRACT

The wobble bases of tRNAs that decode split codons are often heavily modified. In Bacteria tRNA Glu, Gln, Asp contain a variety of xnm 5 s 2 U derivatives. The synthesis pathway for these modifications is complex and fully elucidated only in a handful of organisms, including the Gram-negative Escherichia coli K12 model. Despite the ubiquitous presence of mnm 5 s 2 U modification, genomic analysis shows the absence of mnmC orthologous genes, suggesting the occurrence of alternate biosynthetic schemes for the installation of this modification. Using a combination of comparative genomics and genetic studies, a member of the YtqA subgroup of the Radical Sam superfamily was found to be involved in the synthesis of mnm 5 s 2 U in both Bacillus subtilis and Streptococcus mutans . This protein, renamed MnmL, is encoded in an operon with the recently discovered MnmM methylase involved in the methylation of the pathway intermediate nm 5 s 2 U into mnm 5 s 2 U in B. subtilis . Analysis of tRNA modifications of both S. mutans and Streptococcus pneumoniae shows that growth conditions and genetic backgrounds influence the ratios of pathways intermediates in regulatory loops that are not yet understood. The MnmLM pathway is widespread along the bacterial tree, with some phyla, such as Bacilli, relying exclusively on these two enzymes. The occurrence of fusion proteins, alternate arrangements of biosynthetic components, and loss of biosynthetic branches provide examples of biosynthetic diversity to retain a conserved tRNA modification in nature. Importance: The xnm 5 s 2 U modifications found in several tRNAs at the wobble base position are widespread in Bacteria where they have an important role in decoding efficiency and accuracy. This work identifies a novel enzyme (MnmL) that is a member of a subgroup of the very versatile Radical SAM superfamily and is involved in the synthesis of mnm 5 s 2 U in several Gram-positive bacteria, including human pathogens. This is another novel example of a non-orthologous displacement in the field of tRNA modification synthesis, showing how different solutions evolve to retain U34 tRNA modifications.

3.
Theor Appl Genet ; 135(3): 915-927, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34841478

ABSTRACT

KEY MESSAGE: A 7.9 kb deletion which contains a cyclin-dependent protein kinase inhibitor leads to determinate growth and dwarf phenotype in cucumber. Plant architecture is a composite character which are mainly defined by shoot branching, internode elongation and shoot determinacy. Ideal architecture tends to increase the yield of plants, just like the case of "Green Revolution" increased by the application of semi-dwarf cereal crop varieties in 1960s. Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide, and suitable architecture varieties were selected for different production systems. In this study, we obtained a novel dwarf mutant with strikingly shortened plant height and determinate growth habit. By bulked segregant analysis and map-based cloning, we delimited the dw2 locus to a 56.4 kb region which contain five genes. Among all the variations between WT and dw2 within the 56.4 kb region, a 7.9 kb deletion which resulted in complete deletion of CsaV3_5G035790 in dw2 was co-segregated with the dwarf phenotype. Haplotype analysis and gene expression analysis suggest that CsaV3_5G035790 encoding a cyclin-dependent protein kinase inhibitor (CsSMR1) be the candidate gene responsible for the dwarf phenotype in dw2. RNA-seq analysis shows that several kinesin-like proteins, cyclins and reported organ size regulators are expressed differentially between WT and dw2, which may account for the reduced organ size in dwarf plants. Additionally, the down-regulation of CsSTM and CsWOX9 in dw2 resulted in premature termination of shoot apical meristem development, which eventually reduces the internode number and plant height. Identification and characterization of the CsSMR1 provide a new insight into cucumber architecture modification to be applied to mechanized production system.


Subject(s)
Cucumis sativus , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Plant Cell ; 33(2): 306-321, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33793793

ABSTRACT

Unisexual flowers provide a useful system for studying plant sex determination. In cucumber (Cucumis sativus L.), three major Mendelian loci control unisexual flower development, Female (F), androecious [a; 1-aminocyclopropane-1-carboxylate {ACC} synthase 11, acs11], and Monoecious (M; ACS2), referred to here as the Female, Androecious, Monoecious (FAM) model, in combination with two genes, gynoecious (g, the WIP family C2H2 zinc finger transcription factor gene WIP1) and the ethylene biosynthetic gene ACC oxidase 2 (ACO2). The F locus, conferring gynoecy and the potential for increasing fruit yield, is defined by a 30.2-kb tandem duplication containing three genes. However, the gene that determines the Female phenotype, and its mechanism, remains unknown. Here, we created a set of mutants and revealed that ACS1G is responsible for gynoecy conferred by the F locus. The duplication resulted in ACS1G acquiring a new promoter and expression pattern; in plants carrying the F locus duplication, ACS1G is expressed early in floral bud development, where it functions with ACO2 to generate an ethylene burst. The resulting ethylene represses WIP1 and activates ACS2 to initiate gynoecy. This early ACS1G expression bypasses the need for ACS11 to produce ethylene, thereby establishing a dominant pathway for female floral development. Based on these findings, we propose a model for how these ethylene biosynthesis genes cooperate to control unisexual flower development in cucumber.


Subject(s)
Cucumis sativus/enzymology , Cucumis sativus/genetics , Flowers/enzymology , Flowers/genetics , Lyases/genetics , Amino Acid Sequence , Gene Expression Regulation, Plant , Genetic Loci , Genome, Plant , Genotype , Glucuronidase/metabolism , Lyases/chemistry , Phenotype , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Development ; 147(20)2020 10 27.
Article in English | MEDLINE | ID: mdl-33028608

ABSTRACT

The phytohormone cytokinin regulates diverse aspects of plant growth and development. Our understanding of the metabolism and perception of cytokinin has made great strides in recent years, mostly from studies of the model dicot Arabidopsis Here, we employed a CRISPR/Cas9-based approach to disrupt a subset of cytokinin histidine kinase (HK) receptors in rice (Oryza sativa) in order to explore the role of cytokinin in a monocot species. In hk5 and hk6 single mutants, the root growth, leaf width, inflorescence architecture and/or floral development were affected. The double hk5 hk6 mutant showed more substantial defects, including severely reduced root and shoot growth, a smaller shoot apical meristem, and an enlarged root cap. Flowering was delayed in the hk5 hk6 mutant and the panicle was significantly reduced in size and infertile due to multiple defects in floral development. The hk5 hk6 mutant also exhibited a severely reduced cytokinin response, consistent with the developmental phenotypes arising from a defect in cytokinin signaling. These results indicate that HK5 and HK6 act as cytokinin receptors, with overlapping functions to regulate diverse aspects of rice growth and development.


Subject(s)
Cytokinins/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Cytokinins/pharmacology , Flowers/drug effects , Flowers/growth & development , Meristem/drug effects , Meristem/growth & development , Mutation/genetics , Oryza/anatomy & histology , Oryza/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/growth & development , Seeds/drug effects , Seeds/growth & development
7.
Front Plant Sci ; 7: 1181, 2016.
Article in English | MEDLINE | ID: mdl-27540391

ABSTRACT

In our previous efforts to understand the regulatory mechanisms of cucumber unisexual flower development, we observed a stamen-specific down-regulation of the ethylene receptor CsETR1 in stage 6 female flowers of cucumber (Cucumis sativus L.). This down-regulation is correlated with the primordial anther-specific DNA damage that characterizes inappropriate stamen development in cucumber female flowers. To understand how CsETR1 is down regulated in the stamen, we characterized a cucumber MADS box gene homologous to Arabidopsis AP3, CsAP3. We demonstrated that CsAP3 is functionally equivalent to the Arabidopsis B-class MADS gene AP3. However, three novel characteristics of CsAP3 were found. These include firstly, binding and activating CsETR1 promoter in vitro and in vivo; secondly, containing a GV repeat in its C-terminus, which is conserved in cucurbits and required for the transcription activation; and thirdly, decreased expression as the node number increases, which is similar to that found for CsETR1. These findings revealed not only the conserved function of CsAP3 as a B-class floral identity gene, but also its unique functions in regulation of female flower development in cucumber.

8.
Mol Plant ; 9(9): 1315-1327, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27403533

ABSTRACT

Sex determination in plants gives rise to unisexual flowers that facilitate outcrossing and enhance genetic diversity. In cucumber and melon, ethylene promotes carpel development and arrests stamen development. Five sex-determination genes have been identified, including four encoding 1-aminocyclopropane-1-carboxylate (ACC) synthase that catalyzes the rate-limiting step in ethylene biosynthesis, and a transcription factor gene CmWIP1 that corresponds to the Mendelian locus gynoecious in melon and is a negative regulator of femaleness. ACC oxidase (ACO) converts ACC into ethylene; however, it remains elusive which ACO gene in the cucumber genome is critical for sex determination and how CmWIP1 represses development of female flowers. In this study, we discovered that mutation in an ACO gene, CsACO2, confers androecy in cucumber that bears only male flowers. The mutation disrupts the enzymatic activity of CsACO2, resulting in 50% less ethylene emission from shoot tips. CsACO2 was expressed in the carpel primordia and its expression overlapped with that of CsACS11 in female flowers at key stages for sex determination, presumably providing sufficient ethylene required for proper CsACS2 expression. CmACO3, the ortholog of CsACO2, showed a similar expression pattern in the carpel region, suggesting a conserved function of CsACO2/CmACO3. We demonstrated that CsWIP1, the ortholog of CmWIP1, could directly bind the promoter of CsACO2 and repress its expression. Taken together, we propose a presumably conserved regulatory module consisting of WIP1 transcription factor and ACO controls unisexual flower development in cucumber and melon.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Cucumis sativus/enzymology , Cucumis sativus/metabolism , Flowers/enzymology , Flowers/metabolism , Plant Proteins/metabolism , Amino Acid Oxidoreductases/genetics , Cucumis sativus/genetics , Ethylenes/metabolism , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Promoter Regions, Genetic/genetics
9.
J Integr Plant Biol ; 58(9): 766-71, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26936301

ABSTRACT

We isolated a mutant showing perturbations in the development of male and female floral organs and fruits. Analysis of the single nucleotide polymorphisms from bulked F2 pools identified the causative variant occurring in Csa4G126690. Csa4G126690 shows high homology to Arabidopsis SEPALLATA2 (SEP2) thus being designated CsSEP2. The causative variant was located on the splicing site of CsSEP2, resulting in the skipping of exon 6 and abolishment of the transcriptional activity. Our data suggest that CsSEP2 is involved in the floral organ and fruits development by conferring transcriptional activity.


Subject(s)
Cucumis sativus/growth & development , Cucumis sativus/genetics , Exons/genetics , Flowers/growth & development , Fruit/growth & development , Genes, Plant , Plant Proteins/genetics , Base Sequence , Flowers/genetics , Fruit/genetics , Mutation/genetics , Phenotype , Plant Proteins/metabolism , Polymorphism, Single Nucleotide/genetics
10.
Plant Cell ; 27(6): 1595-604, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26002866

ABSTRACT

Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep resequencing of 115 diverse accessions. The largest proportion of cucumber SVs was formed through nonhomologous end-joining rearrangements, and the occurrence of SVs is closely associated with regions of high nucleotide diversity. These SVs affect the coding regions of 1676 genes, some of which are associated with cucumber domestication. Based on the map, we discovered a copy number variation (CNV) involving four genes that defines the Female (F) locus and gives rise to gynoecious cucumber plants, which bear only female flowers and set fruit at almost every node. The CNV arose from a recent 30.2-kb duplication at a meiotically unstable region, likely via microhomology-mediated break-induced replication. The SV set provides a snapshot of structural variations in plants and will serve as an important resource for exploring genes underlying key traits and for facilitating practical breeding in cucumber.


Subject(s)
Cucumis sativus/genetics , DNA Copy Number Variations/genetics , Flowers/genetics , Chromosome Mapping , Cucumis sativus/anatomy & histology , Flowers/anatomy & histology , Genome, Plant/genetics , Genome-Wide Association Study , Phylogeny
11.
Theor Appl Genet ; 127(7): 1491-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24845123

ABSTRACT

KEY MESSAGE: Next-generation sequencing enabled a fast discovery of a major QTL controlling early flowering in cucumber, corresponding to the FT gene conditioning flowering time in Arabidopsis. Next-generation sequencing technologies are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Early flowering is an important agronomic trait in cucumber (Cucumis sativus L.), but the underlying genetic mechanism is unknown. In this study, we identified a candidate gene for early flowering QTL, Ef1.1 through QTL-seq. Segregation analysis in F2 and BC1 populations derived from a cross between two inbred lines "Muromskij" (early flowering) and "9930" (late flowering) suggested quantitative nature of flowering time in cucumber. Genome-wide comparison of SNP profiles between the early and late-flowering bulks constructed from F2 plants identified a major QTL, designated Ef1.1 on cucumber chromosome 1 for early flowering in Muromskij, which was confirmed by microsatellite marker-based classical QTL mapping in the F2 population. Joint QTL-seq and traditional QTL analysis delimited Ef1.1 to an 890 kb genomic region. A cucumber gene, Csa1G651710, was identified in this region, which is a homolog of the FLOWERING LOCUS T (FT), the main flowering switch gene in Arabidopsis. Quantitative RT-PCR study of the expression level of Csa1G651710 revealed significantly higher expression in early flowering genotypes. Data presented here provide support for Csa1G651710 as a possible candidate gene for early flowering in the cucumber line Muromskij.


Subject(s)
Cucumis sativus/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Genome, Plant , Quantitative Trait Loci , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Flowers/genetics , Genetic Markers , Genotype , Microsatellite Repeats , Molecular Sequence Data , Phenotype , Polymorphism, Single Nucleotide
12.
PLoS One ; 9(2): e87544, 2014.
Article in English | MEDLINE | ID: mdl-24498334

ABSTRACT

Flowering at the appropriate time is crucial for reproductive success and is strongly influenced by various pathways such as photoperiod, circadian clock, FRIGIDA and vernalization. Although each separate pathway has been extensively studied, much less is known about the interactions between them. In this study we have investigated the relationship between the photoperiod/circadian clock gene and FRIGIDA/FLC by characterizing the function of the B-box STO gene family. STO has two B-box Zn-finger domains but lacks the CCT domain. Its expression is controlled by circadian rhythm and is affected by environmental factors and phytohormones. Loss and gain of function mutants show diversiform phenotypes from seed germination to flowering. The sto-1 mutant flowers later than the wild type (WT) under short day growth conditions, while over-expression of STO causes early flowering both in long and short days. STO over-expression not only reduces FLC expression level but it also activates FT and SOC1 expression. It also does not rely on the other B-box gene CO or change the circadian clock system to activate FT and SOC1. Furthermore, the STO activation of FT and SOC1 expression is independent of the repression of FLC; rather STO and FLC compete with each other to regulate downstream genes. Our results indicate that photoperiod and the circadian clock pathway gene STO can affect the key flowering time genes FLC and FT/SOC1 separately, and reveals a novel perspective to the mechanism of flowering regulation.


Subject(s)
Arabidopsis Proteins/genetics , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Repressor Proteins/genetics , Signal Transduction/genetics , Circadian Clocks/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , Genotype , MADS Domain Proteins/genetics , Mutation , Period Circadian Proteins/genetics , Photoperiod , Plant Growth Regulators/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transcription Factors/genetics
13.
Plant Signal Behav ; 5(8): 1052-6, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20657187

ABSTRACT

Our recent work by Wang et al (2010), together with previous studies published in the last decade, have provided evidence suggesting a link between ethylene signaling and primordial anther specific DNA damage in female cucumber flowers. These findings explained ethylene promotion of female flower by ethylene inhibition of stamen development. However, it is not determined if ethylene promotes carpel development. In addition, an explanation of why the naturally occurring gas ethylene was selected to be involved in such developmental events remains elusive. In this study, we carried out a phylogenetic analysis of cucumber ACS genes, and analyzed the expression levels of some pre-miRNAs in male, female and hermaphrodite flowers. We found the M gene might have evolved prior to, or "co-opted" into unisexual flower development before the F gene, and miRNA might be involved in carpel development regulation. Based on these observations, we propose a new hypothesis to explain why ethylene was selected to be involved in the evolution of the unisexual cucumber flower.


Subject(s)
Cucumis sativus/growth & development , Ethylenes/metabolism , Flowers/growth & development , MicroRNAs/genetics , Cucumis sativus/genetics , DNA Damage , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant , Phylogeny , RNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...