Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 19(1): 49, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35305698

ABSTRACT

The newly identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a global health emergency (COVID-19) because of its rapid spread and high mortality. Since the virus epidemic, many pathogenic mechanisms have been revealed, and virus-related vaccines have been successfully developed and applied in clinical practice. However, the pandemic is still developing, and new mutations are still emerging. Virus pathogenicity is closely related to the immune status of the host. As innate immunity is the body's first defense against viruses, understanding the inhibitory effect of SARS-CoV-2 on innate immunity is of great significance for determining the target of antiviral intervention. This review summarizes the molecular mechanism by which SARS-CoV-2 escapes the host immune system, including suppressing innate immune production and blocking adaptive immune priming. Here, on the one hand, we devoted ourselves to summarizing the combined action of innate immune cells, cytokines, and chemokines to fine-tune the outcome of SARS-CoV-2 infection and the related immunopathogenesis. On the other hand, we focused on the effects of the SARS-CoV-2 on innate immunity, including enhancing viral adhesion, increasing the rate of virus invasion, inhibiting the transcription and translation of immune-related mRNA, increasing cellular mRNA degradation, and inhibiting protein transmembrane transport. This review on the underlying mechanism should provide theoretical support for developing future molecular targeted drugs against SARS-CoV-2. Nevertheless, SARS-CoV-2 is a completely new virus, and people's understanding of it is in the process of rapid growth, and various new studies are also being carried out. Although we strive to make our review as inclusive as possible, there may still be incompleteness.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Cytokines/metabolism , Humans , Immunity, Innate
2.
J Allergy Clin Immunol ; 143(6): 2108-2119.e12, 2019 06.
Article in English | MEDLINE | ID: mdl-30578876

ABSTRACT

BACKGROUND: Previous studies have revealed significant alterations in the skin microbiota of patients with atopic dermatitis (AD) not only in diversity and composition but also in function, and the tryptophan (Trp) metabolic pathway is attenuated in the skin microbiota of patients with AD. OBJECTIVE: We sought to assess Trp metabolites on the skin surfaces of patients with AD and to explore the function of the microbial Trp metabolites in skin inflammation in patients with AD. METHODS: A gel-patch method was developed to collect metabolites on the skin surface, which were then assessed by using liquid chromatography-tandem mass spectrometry. A mouse model of calcipotriol (MC903)-induced AD-like dermatitis was used to evaluate the effects of microbial metabolites on AD, and aryl hydrocarbon receptor (AhR)-null mice and keratinocyte cultures were used to investigate the mechanism. RESULTS: Major microbial metabolites of Trp were detected on the skin surfaces of healthy subjects, and the level of indole-3-aldehyde (IAId), an indole derivative of Trp catabolism, was significantly lower in lesional and nonlesional skin of patients with AD than that of healthy subjects. IAId significantly attenuated skin inflammation in mice with MC903-induced AD-like dermatitis, and this effect was blocked by an AhR antagonist and abolished in AhR-null mice. Furthermore, IAId was found to inhibit the MC903-induced expression of thymic stromal lymphopoietin in keratinocytes in vivo and in vitro, which was mediated by binding of AhR to the thymic stromal lymphopoietin promoter. CONCLUSION: IAId, a skin microbiota-derived Trp metabolite, negatively regulated skin inflammation in patients with AD, revealing that skin microbiota play a significant functional role in the pathogenesis of AD.


Subject(s)
Dermatitis, Atopic/drug therapy , Indoles/therapeutic use , Keratinocytes/physiology , Microbiota/immunology , Receptors, Aryl Hydrocarbon/metabolism , Skin/microbiology , Animals , Calcitriol/analogs & derivatives , Calcitriol/immunology , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Aryl Hydrocarbon/genetics , Skin/metabolism , Tryptophan/metabolism , Up-Regulation , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL
...