Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Matter ; 3(2): 321-323, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32835221
2.
Angew Chem Int Ed Engl ; 57(50): 16511-16515, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30378233

ABSTRACT

Efficient nonprecious-metal oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts are key for the commercial viability of fuel cells, metal-air batteries, and water-splitting systems. Thus, high-performance ORR and OER electrocatalysts in acidic electrolytes are needed to support high-efficiency proton exchange membrane (PEM)-based systems. Herein, we report a new approach to design and prepare an ultrathin N-doped holey carbon layer (HCL) on a graphene sheet that exhibits outstanding bifunctional ORR/OER activities in both alkaline and acidic media. The edge sites of HCL are utilized to achieve selective doping of highly active pyridinic-N. The sandwiched graphene sheet provides mechanical support, stabilizes HCL structure and promotes charge transfer. The synergetic effect of the catalyst structure overcomes the drawbacks of holey graphene approaches. The resulting ORR and OER performances are equal to or better than the top-ranked electrocatalysts.

3.
Biosens Bioelectron ; 122: 217-223, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30265972

ABSTRACT

Microbial fuel cells (MFCs) are a promising clean energy source to directly convert waste chemicals to available electric power. However, the practical application of MFCs needs the increased power density, enhanced energy conversion efficiency and reduced electrode material cost. In this study, three-dimensional (3D) macroporous N, P and S co-doped carbon foams (NPS-CFs) were prepared by direct pyrolysis of the commercial bread and employed as free-standing anodes in MFCs. As-obtained NPS-CFs have a large specific surface area (295.07 m2 g-1), high N, P and S doping level, and excellent electrical conductivity. A maximum areal power density of 3134 mW m-2 and current density of 7.56 A m-2 are generated by the MFCs equipped with as-obtained NPS-CF anodes, which is 2.57- and 2.63-fold that of the plain carbon cloth anodes (areal power density of 1218 mW m-2 and current density of 2.87 A m-2), respectively. Such improvement is explored to mainly originate from two respects: the good biocompatibility of NPS-CFs favors the bacterial adhesion and enrichment of electroactive Geobacter species on the electrode surface, while the high conductivity and improved bacteria-electrode interaction efficiently promote the extracellular electron transfer (EET) between the bacteria and the anode. This study provides a low-cost and sustainable way to fabricate high power MFCs for practical applications.


Subject(s)
Bioelectric Energy Sources , Bread , Carbon/chemistry , Pyrolysis , Bacterial Adhesion , Bioelectric Energy Sources/economics , Bioelectric Energy Sources/microbiology , Bread/analysis , Bread/economics , Electric Conductivity , Electricity , Electrodes/economics , Geobacter/physiology , Nitrogen/chemistry , Phosphorus/chemistry , Porosity , Sulfur/chemistry
4.
Chem Sci ; 7(9): 5640-5646, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-30034701

ABSTRACT

Ni- and Co-porphyrin multilayers on reduced graphene oxide (rGO) sheets are reported as novel bifunctional catalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). After binding with organic porphyrin molecules, the catalytically-active Ni2+ and Co2+ ions are periodically constructed onto the rGO surfaces via the layer-by-layer (LBL) assembly technique. The resulting catalysts exhibit good performance towards both OER and ORR, which is achieved with accurate control of the composition and thickness of the multilayer structures. This work highlights the potential for the fabrication of efficient electrocatalysts via molecular design.

5.
Zhongguo Zhong Yao Za Zhi ; 39(19): 3772-6, 2014 Oct.
Article in Chinese | MEDLINE | ID: mdl-25612438

ABSTRACT

Eight phenolic compounds were isolated from Rhododendron phaeochrysum var. agglutinatum and their sructures were identified as phaeochrysin (1), (2R)-4-(3',4'-dihydroxyphenyl) -2-butanol (2), (-) -rhododendrol (3), rhododendrin (4), (+) -isolariciresinol (5), (-) -lyoniresinol (6), lyoniresinol-9'-O-ß-D-xylopyranoside (7), and dihydrodehydrodiconiferyl-3a-O-α-L-rhamnopyranoside (8). Compound 1 is new, and compounds 2, 5-8 were isolated from this plant for the first time.


Subject(s)
Drugs, Chinese Herbal/chemistry , Phenols/chemistry , Rhododendron/chemistry , Mass Spectrometry , Molecular Structure
6.
Ying Yong Sheng Tai Xue Bao ; 24(1): 135-41, 2013 Jan.
Article in Chinese | MEDLINE | ID: mdl-23718001

ABSTRACT

A greenhouse pot experiment was conducted to study the effects of arbuscular mycorrhizal fungus Glomus versiforme on the seedling growth and root membrane permeability, malondiadehyde (MDA) content, and defensive enzyme activities of non-grafted and grafted watermelon growing on the continuously cropped soil. Inoculation with G. versiforme increased the seedling biomass and root activity significantly, and decreased the root membrane permeability and MDA content. The seedling shoot fresh mass, shoot dry mass, and root activity of non-grafted watermelon increased by 57.6%, 60.0% and 142.1%, and those of grafted watermelon increased by 26.7%, 28.0% and 11.0%, respectively, compared with no G. versiforme inoculation. The root membrane permeability of non-grafted seedlings (C), grafted seedlings (G), non-grafted seedlings inoculated with G. versiforme (C+M), and grafted seedlings inoculated with G. versiforme (G+M) was in the order of C >G>C+M>G+M, and the root MDA content was in the sequence of C>G>G+M>C+M. G. versiforme inoculation increased the root phenylalanine ammonialyase (PAL), catalase (CAT), peroxidase (POD), beta-1,3-glucanase and chitinase activities of grafted and non-grafted seedlings significantly, and the peaks of the POD, PAL and beta-1,3-glucanase activities in the mycorrhizal roots appeared about two weeks earlier than those in the non-inoculated roots. These results indicated that inoculating arbuscular mycorrhizal fungus G. versiforme could activate the defensive enzyme activities of non-grafted and grafted watermelon seedlings, enable the seedling roots to produce rapid response to adversity, and thus, improve the capability of watermelon seedling against continuous cropping obstacle.


Subject(s)
Agriculture/methods , Citrullus/growth & development , Mycorrhizae/physiology , Seedlings/growth & development , Catalase/metabolism , Citrullus/microbiology , Peroxidase/metabolism , Plant Roots/enzymology , Plant Roots/microbiology , Seedlings/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...