Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
BMC Infect Dis ; 24(1): 413, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641791

ABSTRACT

Considering that neutralizing antibody levels induced by two doses of the inactivated vaccine decreased over time and had fallen to low levels by 6 months, and homologous and heterologous booster immunization programs have been implemented in adults in China. The booster immunization of recombinant COVID-19 vaccine (ZF2001) after priming with inactivated vaccine in healthy children and adolescents has not been reported. We performed an open-labeled, single-arm clinical trial to evaluate the safety and immunogenicity of heterologous booster immunization with ZF2001 after priming with inactivated vaccine among 240 population aged 3-17 years in China. The primary outcome was immunogenicity, including geometric mean titers (GMTs), geometric mean ratios (GMRs) and seroconversion rates of SARS-CoV-2 neutralizing antibodies against prototype SARS-CoV-2 and Omicron BA.2 variant at 14 days after vaccination booster. On day 14 post-booster, a third dose booster of the ZF2001 provided a substantial increase in antibody responses in minors, and the overall occurrence rate of adverse reactions after heterologous vaccination was low and all adverse reactions were mild or moderate. The results showed that the ZF2001 heterologous booster had high immunogenicity and good safety profile in children and adolescents, and can elicit a certain level of neutralizing antibodies against Omicron.Trial registration NCT05895110 (Retrospectively registered, First posted in ClinicalTrials.gov date: 08/06/2023).


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines, Subunit , Adolescent , Child , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunogenicity, Vaccine , SARS-CoV-2 , Vaccines, Inactivated/adverse effects , Child, Preschool
2.
ACS Nano ; 18(17): 11200-11216, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38620102

ABSTRACT

Intranasal vaccines, eliciting mucosal immune responses, can prevent early invasion, replication, and transmission of pathogens in the respiratory tract. However, the effective delivery of antigens through the nasal barrier and boosting of a robust systematic and mucosal immune remain challenges in intranasal vaccine development. Here, we describe an intranasally administered self-healing hydrogel vaccine with a reversible strain-dependent sol-gel transition by precisely modulating the self-assembly processes between the natural drug rhein and aluminum ions. The highly bioadhesive hydrogel vaccine enhances antigen stability and prolongs residence time in the nasal cavity and lungs by confining the antigen to the surface of the nasal mucosa, acting as a "mucosal mask". The hydrogel also stimulates superior immunoenhancing properties, including antigen internalization, cross-presentation, and dendritic cell maturation. Furthermore, the formulation recruits immunocytes to the nasal mucosa and nasal-associated lymphoid tissue (NALT) while enhancing antigen-specific humoral, cellular, and mucosal immune responses. Our findings present a promising strategy for preparing intranasal vaccines for infectious diseases or cancer.


Subject(s)
Administration, Intranasal , Hydrogels , Immunity, Mucosal , Nasal Mucosa , Animals , Hydrogels/chemistry , Mice , Immunity, Mucosal/drug effects , Nasal Mucosa/immunology , Mice, Inbred BALB C , Female , Humans , Mice, Inbred C57BL
3.
Viruses ; 16(4)2024 04 22.
Article in English | MEDLINE | ID: mdl-38675989

ABSTRACT

BACKGROUND: After the adjustment of COVID-19 epidemic policy, mainland China experienced two consecutive waves of Omicron variants within a seven-month period. In Guangzhou city, as one of the most populous regions, the viral infection characteristics, molecular epidemiology, and the dynamic of population immunity are still elusive. METHODS: We launched a prospective cohort study in the Guangdong Provincial CDC from December 2022 to July 2023. Fifty participants who received the same vaccination regimen and had no previous infection were recruited. RESULTS: 90% of individuals were infected with Omicron BA.5* variants within three weeks in the first wave. Thirteen cases (28.26%) experienced infection with XBB.1* variants, occurring from 14 weeks to 21 weeks after the first wave. BA.5* infections exhibited higher viral loads in nasopharyngeal sites compared to oropharyngeal sites. Compared to BA.5* infections, the XBB.1* infections had significantly milder clinical symptoms, lower viral loads, and shorter durations of virus positivity. The infection with the BA.5* variant elicited varying levels of neutralizing antibodies against XBB.1* among different individuals, even with similar levels of BA.5* antibodies. The level of neutralizing antibodies specific to XBB.1* determined the risk of reinfection. CONCLUSIONS: The rapid large-scale infections of the Omicron variants have quickly established herd immunity among the population in mainland China. In the future of the COVID-19 epidemic, a lower infection rate but a longer duration can be expected. Given the large population size and ongoing diversified herd immunity, it remains crucial to closely monitor the molecular epidemiology of SARS-CoV-2 for the emergence of new variants of concern in this region. Additionally, the timely evaluation of the immune status across different age groups is essential for informing future vaccination strategies and intervention policies.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Viral Load , Humans , COVID-19/epidemiology , COVID-19/virology , COVID-19/immunology , China/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/classification , Male , Female , Adult , Middle Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Prospective Studies , Antibodies, Viral/blood , Cohort Studies , Young Adult , Aged
4.
Hum Vaccin Immunother ; 20(1): 2300208, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38191194

ABSTRACT

Global COVID-19 vaccination programs effectively contained the fast spread of SARS-CoV-2. Characterizing the immunity status of returned populations will favor understanding the achievement of herd immunity and long-term management of COVID-19 in China. Individuals were recruited from 7 quarantine stations in Guangzhou, China. Blood and throat swab specimens were collected from participants, and their immunity status was determined through competitive ELISA, microneutralization assay and enzyme-linked FluoroSpot assay. A total of 272 subjects were involved in the questionnaire survey, of whom 235 (86.4%) were returning Chinese individuals and 37 (13.6%) were foreigners. Blood and throat swab specimens were collected from 108 returning Chinese individuals. Neutralizing antibodies against SARS-CoV-2 were detected in ~90% of returning Chinese individuals, either in the primary or the homologous and heterologous booster vaccination group. The serum NAb titers were significantly decreased against SARS-CoV-2 Omicron BA.5, BF.7, BQ.1 and XBB.1 compared with the prototype virus. However, memory T-cell responses, including specific IFN-γ and IL-2 responses, were not different in either group. Smoking, alcohol consumption, SARS-CoV-2 infection, COVID-19 vaccination, and the time interval between last vaccination and sampling were independent influencing factors for NAb titers against prototype SARS-CoV-2 and variants of concern. The vaccine dose was the unique common influencing factor for Omicron subvariants. Enhanced immunity against SARS-CoV-2 was established in returning Chinese individuals who were exposed to reinfection and vaccination. Domestic residents will benefit from booster homologous or heterologous COVID-19 vaccination after reopening of China, which is also useful against breakthrough infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Antibodies, Neutralizing , China/epidemiology
7.
Infect Drug Resist ; 16: 4687-4696, 2023.
Article in English | MEDLINE | ID: mdl-37484904

ABSTRACT

Background: Deep fungal infection has become an important cause of infection and death in hospitalized patients, and this has worsened with increasing antifungal drug resistance. Objective: A 3-year retrospective study was conducted to investigate the clinical characteristics, pathogen spectrum, and drug resistance of deep fungal infection in a regional hospital of Guangzhou, China. Methods: Non-duplicate fungi isolates recovered from blood and other sterile body fluids of in-patients of the clinical department were identified using biochemical tests of pure culture with the API20C AUX and CHROMagar medium. Antifungal susceptibilities were determined by Sensititre YeastOne® panel trays. Results: In this study, 525 patients (283 female, 242 male) with deep fungal infection were included, half of them were elderly patients (≥60 years) (54.67%, n=286). A total of 605 non-repetitive fungi were finally isolated from sterile samples, of which urine specimens accounted for 66.12% (n=400). Surgery, ICU, and internal medicine were the top three departments that fungi were frequently detected. The mainly isolated fungal species were Candida albicans (43.97%, n=266), Candida glabrata (20.00%, n=121), and Candida tropicalis (17.02%, n=103), which contributed to over 80% of fungal infection. The susceptibility of the Candida spp. to echinocandins, 5-fluorocytosine, and amphotericin B remained above 95%, while C. glabrata and C. tropicalis to itraconazole were about 95%, and the dose-dependent susceptibility of C. glabrata to fluconazole was more than 90%. The echinocandins had no antifungal activity against Trichosporon asahi in vitro (MIC90>8 µg/mL), but azole drugs were good, especially voriconazole and itraconazole (MIC90 = 0.25 µg/mL). Conclusion: The main causative agents of fungal infection were still the genus of Candida. Echinocandins were the first choice for clinical therapy of Candida infection, followed with 5-fluorocytosine and amphotericin B. Azole antifungal agents should be used with caution in Candida glabrata and Candida tropicalis infections.

8.
Front Public Health ; 11: 1035060, 2023.
Article in English | MEDLINE | ID: mdl-37522010

ABSTRACT

Objectives: Dengue has been endemic in Southeast Asian countries for decades. There are few reports tracing the dynamics of dengue in real time. In this study, we generated hundreds of pathogen genomes to understand the genomic epidemiology of an outbreak in a hyper-endemic area of dengue. Methods: We leveraged whole-genome short-read sequencing (PE150) to generate genomes of the dengue virus and investigated the genomic epidemiology of a dengue virus transmission in a mesoscale outbreak in Shantou, China, in 2019. Results: The outbreak was sustained from July to December 2019. The total accumulated number of laboratory-confirmed cases was 944. No gender bias or fatalities were recorded. Cambodia and Singapore were the main sources of imported dengue cases (74.07%, n = 20). A total of 284 dengue virus strains were isolated, including 259 DENV-1, 24 DENV-2, and 1 DENV-3 isolates. We generated the entire genome of 252 DENV isolates (229 DENV-1, 22 DENV-2, and 1 DENV-3), which represented 26.7% of the total cases. Combined epidemiological and phylogenetic analyses indicated multiple independent introductions. The internal transmission evaluations and transmission network reconstruction supported the inference of phylodynamic analysis, with high Bayes factor support in BSSVS analysis. Two expansion founders and transmission chains were detected in CCH and LG of Shantou. Conclusions: We observed the instant effects of genomic epidemiology in monitoring the dynamics of DENV and highlighted its prospects for real-time tracing of outbreaks of other novel agents in the future.


Subject(s)
Dengue , Genome, Viral , China/epidemiology , Dengue/epidemiology , Dengue/transmission , Dengue/virology , Humans , Dengue Virus/genetics , Disease Outbreaks , Phylogeny , Male , Female , Young Adult , Adult , Middle Aged , Infant , Child, Preschool , Child , Adolescent , Aged , Aged, 80 and over
9.
Nat Med ; 29(7): 1750-1759, 2023 07.
Article in English | MEDLINE | ID: mdl-37349537

ABSTRACT

Exposure to environmental pollution influences respiratory health. The role of the airway microbial ecosystem underlying the interaction of exposure and respiratory health remains unclear. Here, through a province-wide chronic obstructive pulmonary disease surveillance program, we conducted a population-based survey of bacterial (n = 1,651) and fungal (n = 719) taxa and metagenomes (n = 1,128) from induced sputum of 1,651 household members in Guangdong, China. We found that cigarette smoking and higher PM2.5 concentration were associated with lung function impairment through the mediation of bacterial and fungal communities, respectively, and that exposure was associated with an enhanced inter-kingdom microbial interaction resembling the pattern seen in chronic obstructive pulmonary disease. Enrichment of Neisseria was associated with a 2.25-fold increased risk of high respiratory symptom burden, coupled with an elevation in Aspergillus, in association with occupational pollution. We developed an individualized microbiome-based health index, which covaried with exposure, respiratory symptoms and diseases, with potential generalizability to global datasets. Our results may inform environmental risk prevention and guide interventions that harness airway microbiome.


Subject(s)
Microbiota , Pulmonary Disease, Chronic Obstructive , Humans , Respiratory System , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/microbiology , Environmental Exposure/adverse effects , Sputum/microbiology
10.
Vaccines (Basel) ; 11(3)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36992078

ABSTRACT

Vaccination is the key to prevent varicella zoster virus (VZV) infection in children. Voluntary and self-funded strategies have led to variable vaccination rates against VZV in China. For low-income populations, in particular, the effects of VZV vaccination have been insufficiently estimated. Community-based serosurveillance was conducted in two less developed regions, Zhanjiang and Heyuan, of Guangdong, China. Anti-VZV IgG antibodies in serum were detected by ELISA. The vaccination data were derived from the Guangdong Immune Planning Information System. A total of 4221 participants were involved, of which 3377 were from three counties of Zhanjiang and the other 844 were from one county of Heyuan, Guangdong, China. The total VZV IgG seropositivity rate in vaccinated individuals was 34.30% and 42.76%, while it was 89.61% and 91.62% in non-vaccinated populations of Zhanjiang and Heyuan, respectively. The seropositivity rate increased gradually with age, reaching ~90% in the >20- to 30-year-old group. The VarV vaccination rates of children aged 1-14 years were 60.47% for one dose and 6.20% for two doses in Zhanjiang, and 52.24% for one dose and 4.48% for two doses in Heyuan. Compared with the non-vaccinated group (31.19%) and one-dose group (35.47%), the positivity rate of anti-VZV IgG antibodies was significantly higher in the two-dose group (67.86%). Before the VarV policy was reformed, the anti-VZV IgG positivity rate was 27.85% in the one-dose-vaccinated participants, which increased to 30.43% after October 2017. The high seroprevalence in participants was due to infection of VZV in Zhanjiang and Heyuan, not vaccination against VZV. Children aged 0-5 years are still vulnerable to varicella, so a two-dose vaccination program should be implemented to prevent onward transmission of VZV.

11.
Lancet Child Adolesc Health ; 7(4): 269-279, 2023 04.
Article in English | MEDLINE | ID: mdl-36803632

ABSTRACT

BACKGROUND: ZF2001 is a recombinant protein subunit vaccine against SARS-CoV-2 that has been approved for use in China, Colombia, Indonesia, and Uzbekistan in adults aged 18 years or older, but not yet in children and adolescents younger than 18 years. We aimed to evaluate the safety and immunogenicity of ZF2001 in children and adolescents aged 3-17 years in China. METHODS: The randomised, double-blind, placebo-controlled, phase 1 trial and the open-label, non-randomised, non-inferiority, phase 2 trial were done at the Xiangtan Center for Disease Control and Prevention (Hunan Province, China). Healthy children and adolescents aged 3-17 years, without a history of SARS-CoV-2 vaccination, without a history of COVID-19, without COVID-19 at the time of the study, and without contact with patients with confirmed or suspected COVID-19 were included in the phase 1 and phase 2 trials. In the phase 1 trial, participants were divided into three groups according to age (3-5 years, 6-11 years, and 12-17 years). Each group was randomly assigned (4:1), using block randomisation with five blocks, each with a block size of five, to receive three 25 µg doses of the vaccine, ZF2001, or placebo intramuscularly in the arm 30 days apart. The participants and investigators were masked to treatment allocation. In the phase 2 trial, participants received three 25 µg doses of ZF2001 30 days apart and remained stratified by age group. For phase 1, the primary endpoint was safety and the secondary endpoint was immunogenicity (humoral immune response on day 30 after the third vaccine dose: geometric mean titre [GMT] of prototype SARS-CoV-2 neutralising antibodies and seroconversion rate, and geometric mean concentration [GMC] of prototype SARS-CoV-2 receptor-binding domain [RBD]-binding IgG antibodies and seroconversion rate). For phase 2, the primary endpoint was the GMT of SARS-CoV-2 neutralising antibodies with seroconversion rate on day 14 after the third vaccine dose, and the secondary endpoints included the GMT of RBD-binding antibodies and seroconversion rate on day 14 after the third vaccine dose, the GMT of neutralising antibodies against the omicron BA.2 subvariant and seroconversion rate on day 14 after the third vaccine dose, and safety. Safety was analysed in participants who received at least one dose of the vaccine or placebo. Immunogenicity was analysed in the full-analysis set (ie, participants who received at least one dose and had antibody results) by intention to treat and in the per-protocol set (ie, participants who completed the whole vaccination course and had antibody results). Non-inferiority in the phase 2 trial (neutralising antibody titre of participants from this trial aged 3-17 years vs that of participants aged 18-59 years from a separate phase 3 trial) for clinical outcome assessment was based on the geometric mean ratio (GMR) and was considered met if the lower bound of the 95% CI for the GMR was 0·67 or greater. These trials are registered with ClinicalTrials.gov, NCT04961359 (phase 1) and NCT05109598 (phase 2). FINDINGS: Between July 10 and Sept 4, 2021, 75 children and adolescents were randomly assigned to receive ZF2001 (n=60) or placebo (n=15) in the phase 1 trial and were included in safety and immunogenicity analyses. Between Nov 5, 2021, and Feb 14, 2022, 400 participants (130 aged 3-7 years, 210 aged 6-11 years, and 60 aged 12-17 years) were included in the phase 2 trial and were included in the safety analysis; six participants were excluded from the immunogenicity analyses. 25 (42%) of 60 participants in the ZF2001 group and seven (47%) of 15 participants in the placebo group in phase 1, and 179 (45%) of 400 participants in phase 2, had adverse events within 30 days after the third vaccination, without a significant difference between groups in phase 1. Most adverse events were grade 1 or 2 (73 [97%] of 75 in the phase 1 trial, and 391 [98%] of 400 in the phase 2 trial). One participant in the phase 1 trial and three in the phase 2 trial who received ZF2001 had serious adverse events. One serious adverse event (acute allergic dermatitis) in the phase 2 trial was possibly related to the vaccine. In the phase 1 trial, on day 30 after the third dose, in the ZF2001 group, seroconversion of neutralising antibodies against SARS-CoV-2 was observed in 56 (93%; 95% CI 84-98) of 60 participants, with a GMT of 176·5 (95% CI 118·6-262·8), and seroconversion of RBD-binding antibodies was observed in all 60 (100%; 95% CI 94-100) participants, with a GMC of 47·7 IU/mL (95% CI 40·1-56·6). In the phase 2 trial, on day 14 after the third dose, seroconversion of neutralising antibodies against SARS-CoV-2 was seen in 392 (99%; 95% CI 98-100) participants, with a GMT of 245·4 (95% CI 220·0-273·7), and seroconversion of RBD-binding antibodies was observed in all 394 (100%; 99-100) participants, with a GMT of 8021 (7366-8734). On day 14 after the third dose, seroconversion of neutralising antibodies against the omicron subvariant BA.2 was observed in 375 (95%; 95% CI 93-97) of 394 participants, with a GMT of 42·9 (95% CI 37·9-48·5). For the non-inferiority comparison of participants aged 3-17 years with those aged 18-59 years for SARS-CoV-2 neutralising antibodies, the adjusted GMR was 8·6 (95% CI 7·0-10·4), with the lower bound of the GMR greater than 0·67. INTERPRETATION: ZF2001 is safe, well tolerated, and immunogenic in children and adolescents aged 3-17 years. Vaccine-elicited sera can neutralise the omicron BA.2 subvariant, but with reduced activity. The results support further studies of ZF2001 in children and adolescents. FUNDING: Anhui Zhifei Longcom Biopharmaceutical and the Excellent Young Scientist Program from National Natural Science Foundation of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Child , Adolescent , COVID-19 Vaccines/adverse effects , Protein Subunits , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
12.
Vaccines (Basel) ; 11(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36679968

ABSTRACT

Background: Mass basic and booster immunization programs effectively contained the spread of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, also known as COVID-19. However, the emerging Variants of Concern (VOCs) of COVID-19 evade the immune protection of the vaccine and increase the risk of reinfection. Methods: Serum antibodies of 384 COVID-19 cases recovered from SARS-CoV-2 infection were examined. Correlations between clinical symptoms and antibodies against VOCs were analyzed. Result: All 384 cases (aged 43, range 1−90) were from 15 cities of Guangdong, China. The specific IgA, IgG, and IgM antibodies could be detected within 4−6 weeks after infection. A broad cross-reaction between SARS-CoV-2 and Severe Acute Respiratory Syndrome Coronavirus, but not with Middle East Respiratory Syndrome Coronavirus was found. The titers of neutralization antibodies (NAbs) were significantly correlated with IgG (r = 0.667, p < 0.001), but showed poor neutralizing effects against VOCs. Age, fever, and hormone therapy were independent risk factors for NAbs titers reduction against VOCs. Conclusion: Humoral immunity antibodies from the original strain of COVID-19 showed weak neutralization effects against VOCs, and decreased neutralizing ability was associated with initial age, fever, and hormone therapy, which hindered the effects of the COVID-19 vaccine developed from the SARS-CoV-2 prototype virus.

15.
Nat Nanotechnol ; 17(9): 993-1003, 2022 09.
Article in English | MEDLINE | ID: mdl-35995853

ABSTRACT

The global emergency caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can only be solved with effective and widespread preventive and therapeutic strategies, and both are still insufficient. Here, we describe an ultrathin two-dimensional CuInP2S6 (CIPS) nanosheet as a new agent against SARS-CoV-2 infection. CIPS exhibits an extremely high and selective binding capacity (dissociation constant (KD) < 1 pM) for the receptor binding domain of the spike protein of wild-type SARS-CoV-2 and its variants of concern, including Delta and Omicron, inhibiting virus entry and infection in angiotensin converting enzyme 2 (ACE2)-bearing cells, human airway epithelial organoids and human ACE2-transgenic mice. On association with CIPS, the virus is quickly phagocytosed and eliminated by macrophages, suggesting that CIPS could be successfully used to capture and facilitate virus elimination by the host. Thus, we propose CIPS as a promising nanodrug for future safe and effective anti-SARS-CoV-2 therapy, and as a decontamination agent and surface-coating material to reduce SARS-CoV-2 infectivity.


Subject(s)
COVID-19 Drug Treatment , Nanostructures , Angiotensin-Converting Enzyme 2 , Animals , Humans , Mice , Nanostructures/therapeutic use , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
16.
Front Microbiol ; 13: 945133, 2022.
Article in English | MEDLINE | ID: mdl-35836420

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 variants is a new and unsolved threat; therefore, it is an urgent and unmet need to develop a simple and rapid method for detecting and tracking SARS-CoV-2 variants. The spike gene of SARS-CoV-2 was amplified by isothermal recombinase-aided amplification (RAA) followed by the cleavage of CRISPR-Cas12a in which five allele-specific crRNAs and two Omicron-specific crRNAs were designed to detect and distinguish major SARS-CoV-2 variants of concerns (VOCs), including alpha, beta, delta variants, and Omicron sublineages BA.1 and BA.2. The whole reaction can be carried out in one tube at 39°C within 1.5-2 h, and the results can be read out by a fluorescence meter or naked eyes. Our results show that the RAA/CRISPR-Cas12a-based assay could readily distinguish the signature mutations, i.e., K417N, T478K, E484K, N501Y, and D614G, with a sensitivity of 100.0% and a specificity of 94.9-100.0%, respectively. The assay had a low limit of detection (LOD) of 104 copies/reaction and a concordance of 92.59% with Sanger sequencing results when detecting 54 SARS-CoV-2 positive clinical samples. The two Omicron-specific crRNAs can readily and correctly distinguish Omicron BA.1 and BA.2 sublineages with a LOD of as low as 20 copies/reaction. Furthermore, no cross-reaction was observed for all crRNAs analyzed when detecting clinical samples infected with 11 common respiratory pathogens. The combination of isothermal amplification and CRISPR-Cas12a-mediated assay is suitable for rapid detection of major SARS-CoV-2 variants in point-of-care testing and in resource-limiting settings. This simple assay could be quickly updated for emerging variants and implemented to routinely monitor and track the spread of SARS-CoV-2 variants.

17.
PLoS Negl Trop Dis ; 16(6): e0010485, 2022 06.
Article in English | MEDLINE | ID: mdl-35696422

ABSTRACT

Dematiaceous Fonsecaea monophora is one of the major pathogens of chromoblastomycosis. It has been well established that melanization is catalyzed by the type I polyketide synthase (PKS) in F. monophora. Multidomain protein Type I PKS is encoded by six genes, in which the last enzyme thioesterase (TE) catalyzes the cyclization and releases polyketide. Two PKS genes AYO21_03016 (pks1) and AYO21_10638 have been found in F. monophora and both PKS loci have the same gene arrangement but the TE domain in AYO21_10638 is truncated at 3'- end. TE may be the key enzyme to maintain the function of pks1. To test this hypothesis, we constructed a 3'-end 500 bp deletion mutant of AYO21_03016 (Δpks1-TE-C500) and its complemented strain. We profiled metabolome of this mutant and analyzed the consequences of impaired metabolism in this mutant by fungal growth in vitro and by pathogenesis in vivo. Compared with wild-type strain, we found that the mutant repressed pks1 expression and other 5 genes expression levels were reduced by more than 50%, perhaps leading to a corresponding melanin loss. The mutant also reduced sporulation and delayed germination, became vulnerable to various environmental stresses and was less resistance to macrophage or neutrophil killings in vitro, and less virulence in mice footpad model. Metabolomic analysis indicated that many metabolites were remarkably affected in Δpks1-TE-C500, in particular, an increased nicotinamide and antioxidant glutathione. In conclusion, we confirmed the crucial role of C-terminal TE in maintaining fully function of pks1 in F. monophora. Deletion of TE negatively impacts on the synthesis of melanin and metabolites that eventually affect growth and virulence of F. monophora. Any potential inhibitor of TE then could be a novel antifungal target for drug development.


Subject(s)
Ascomycota , Chromoblastomycosis , Animals , Ascomycota/genetics , Fonsecaea , Melanins/metabolism , Mice
19.
J Virol ; 96(13): e0038322, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35699445

ABSTRACT

Despite the rapid deployment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, the emergence of SARS-CoV-2 variants and reports of their immune evasion characteristics have led to an urgent need for novel vaccines that confer potent cross-protective immunity. In this study, we constructed three different SARS-CoV-2 spike S1-conjugated nanoparticle vaccine candidates that exhibited high structural homogeneity and stability. Notably, these vaccines elicited up to 50-times-higher neutralizing antibody titers than the S1 monomer in mice. Crucially, it was found that the S1-conjugated nanoparticle vaccine could elicit comparable levels of neutralizing antibodies against wild-type or emerging variant SARS-CoV-2, with cross-reactivity to SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), the effect of which could be further enhanced using our designed nanoparticles. Our results indicate that the S1-conjugated nanoparticles are promising vaccine candidates with the potential to elicit potent and cross-reactive immunity against not only wild-type SARS-CoV-2, but also its variants of concern, variants of interest, and even other pathogenic betacoronaviruses. IMPORTANCE The emergence of SARS-CoV-2 variants led to an urgent demand for a broadly effective vaccine against the threat of variant infection. The spike protein S1-based nanoparticle designed in our study could elicit a comprehensive humoral response toward different SARS-CoV-2 variants of concern and variants of interest and will be helpful to combat COVID-19 globally.


Subject(s)
Antibody Formation , COVID-19 Vaccines , COVID-19 , Nanoparticles , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
20.
J Infect ; 85(4): 428-435, 2022 10.
Article in English | MEDLINE | ID: mdl-35768049

ABSTRACT

Enterovirus A71 (EV71) vaccination program was introduced in 2016 in China. Based on a longitudinal surveillance dataset from 2012 to 2019 in Guangdong, China, we estimated the impact of the EV71 vaccination program on hand, foot, and mouth disease (HFMD) incidence, by using a counterfactual prediction made from synthetic control approach integrated with a Bayesian time-series model. We observed a relative reduction of 41.4% for EV71-associated HFMD cases during the post-vaccination period of 2017-2019, corresponding to 26,226 cases averted. The reduction of EV71-associated HFMD cases raised with the elevation of EV71 vaccine coverage by year. We found an indirect effect for the children aged 6-14 years who were less likely to be vaccinated. Whereas, the EV71 vaccine may not protect against non-EV71-associated HFMD. This study provides a template for ongoing public health surveillance of EV71 vaccine effectiveness with a counterfactual study design. Our results show strong evidence of the EV71 vaccination program working on reducing EV71-associated HFMD in real-world settings. The finding will benefit policy-making of EV71 vaccination and the prevention of HFMD.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Bayes Theorem , Child , China/epidemiology , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/prevention & control , Humans , Infant , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...