Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.147
Filter
1.
Opt Lett ; 49(11): 3194-3197, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824361

ABSTRACT

Here, we demonstrate the realization of hollow-core light cages (LCs) on commercial step-index fibers using 3D nanoprinting, resulting in fully fiber-integrated devices. Two different light cage geometries with record-high aspect ratio strands and unique sidewise access to the core have been implemented, exhibiting excellent optical and mechanical properties. These achievements are based on the use of 3D nanoprinting to fabricate light cages and stabilize them with customized support elements. Overall, this approach results in novel, to the best of our knowledge, fiber-interfaced hollow-core devices that combine several advantages in a lab-on-a-fiber platform that is particularly useful for diffusion-related applications in environmental sciences, nanosciences, and quantum technologies.

2.
Brain ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703370

ABSTRACT

Gray matter (GM) atrophies were observed in multiple sclerosis, neuromyelitis optica spectrum disorders (both anti-aquaporin-4 antibody-positive [AQP4+], and -negative [AQP4-] subtypes NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Revealing the pathogenesis of brain atrophy in these disorders would help their differential diagnosis and guide therapeutic strategies. To determine the neurobiological underpinnings of GM atrophies in multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD, and MOGAD, we conducted a virtual histology analysis that links T1-weighted image derived GM atrophy and gene expression using a multicenter cohort of 324 patients with multiple sclerosis, 197 patients with AQP4+ NMOSD, 75 patients with AQP4- NMOSD, 47 patients with MOGAD, and 2,169 healthy controls (HCs). First, interregional GM atrophy profiles across the cortical and subcortical regions were determined by Cohen's d between patients with multiple sclerosis, AQP4+ NMOSD, AQP4- NMOSD, MOGAD and HCs. Then, the GM atrophy profiles were spatially correlated with the gene expressions extracted from the Allen Human Brain Atlas, respectively. Finally, we explored the virtual histology of clinical feature relevant GM atrophy by subgroup analysis that stratified by physical disability, disease duration, number of relapses, lesion burden, and cognitive function. Multiple sclerosis showed severe widespread GM atrophy pattern, mainly involving subcortical nuclei and brainstem. AQP4+ NMOSD showed obvious widespread GM atrophy pattern, predominately located in occipital cortex as well as cerebellum. AQP4- NMOSD showed mild widespread GM atrophy pattern, mainly located in frontal and parietal cortices. MOGAD showed GM atrophy mainly involving the frontal and temporal cortices. High expression of genes specific to microglia, astrocytes, oligodendrocytes, and endothelial cells in multiple sclerosis, S1 pyramidal cells in AQP4+ NMOSD, as well as S1 and CA1 pyramidal cells in MOGAD had spatial correlations with GM atrophy profiles were observed, while no atrophy profile related gene expression was found in AQP4- NMOSD. Virtual histology of clinical feature relevant GM atrophy mainly pointed to the shared neuronal and endothelial cells among the four neuroinflammatory diseases. The unique underlying virtual histology patterns were microglia, astrocytes, and oligodendrocytes for multiple sclerosis; astrocytes for AQP4+ NMOSD; and oligodendrocytes for MOGAD. Neuronal and endothelial cells were shared potential targets across these neuroinflammatory diseases. These findings might help their differential diagnosis and optimal therapeutic strategies.

3.
Front Oncol ; 14: 1405178, 2024.
Article in English | MEDLINE | ID: mdl-38715786

ABSTRACT

The progression pattern of tumors has an impact on the survival of patients with advanced hepatocellular carcinoma (HCC) and has been applied in the design of clinical trials for multiple second-line drugs. Previous research results have been contradictory, and the clinical impact of different progression patterns and their role in survival are still in question. Purpose: The study aims to analyze the impact of different progression patterns and tumor burden size on survival of HCC patients, as well as their interactions, through a retrospective cohort study. Patients and methods: The study involved 538 patients who had undergone treatment with sorafenib and had shown radiographic progression. The progression pattern was analyzed using Cox regression by including an interaction term between progression pattern and tumor burden, which was then visualized through a graphical analysis. Tumor burden was categorized into low, medium, and high subgroups based on the six-and-twelve criteria, allowing for an exploration of the effect of progression pattern on survival in different tumor burden situations. Results: Compared to patients with only intrahepatic progression (NIH/IHG) with an overall survival (OS) of 14.1/19.9 months and post-progression survival (PPS) of 8.1/13.1 months respectively, patients with extrahepatic lesions (NEH/EHG) had worse overall and postprogressive survival (OS: 9.3/9.2 months, PPS: 4.9/5.1 months). The hazard ratio for extrahepatic progression (NEH/EHG) compared to intrahepatic progression (NIH/IHG) at low, medium, and high tumor burden were [HR 2.729, 95%CI 1.189-6.263], [HR 1.755, 95%CI 1.269-2.427], and [HR 1.117, 95%CI 0.832-1.499], respectively. Conclusion: The study concluded that the interaction between the tumor progression patterns and tumor burden significantly affects the prognosis of HCC patients. As the tumor burden increases, the sensitivity of the patient's risk of death to the progression pattern decreases. These findings are valuable in personalized treatment and trial design.

4.
Small ; : e2402488, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716752

ABSTRACT

Solar power generation, as a clean energy source, has significant potential for development. This work reports the recent efforts to address the challenge of low power conversion efficiency in photovoltaic devices by proposing the fabrication of a luminescence downshifting layer using polyvinyl chloride (PVC) with added fluorescent dots to enhance light utilization. A photoluminescent microsphere (HCPAM) is synthesized by cross-linking hexachlorocyclotriphosphazene, 2-iminobenzimidazoline, and polyethyleneimine. Low addition of HCPAM can improve the fire safety of PVC films, raising the limiting oxygen index of PVC to 32.4% and reducing the total heat release and smoke production rate values by 14.5% and 42.9%, respectively. Additionally, modified PVC film remains a transparency of 88% and shows down-conversion light properties. When the PVC+1%HCPAM film is applied to the solar cell, the short-circuit current density increases from 42.3 to 43.8 mA cm-2, resulting in a 7.0% enhancement in power conversion efficiency. HCPAM also effectively delays the photooxidative aging of PVC, particularly at a 3% content, maintaining the surface morphology and optical properties of PVC samples during ultraviolet aging. This study offers an innovative strategy to enhance the fire and UV-resistant performance of PVC films and expand their applications in protecting and efficiently utilizing photovoltaic devices.

5.
Evol Comput ; : 1-31, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776458

ABSTRACT

Premature convergence is a thorny problem for particle swarm optimization (PSO) algorithms, especially on multimodal problems, where maintaining swarm diversity is crucial. However, most enhancement strategies for PSO, including the existing diversity-guided strategies, have not fully addressed this issue. This paper proposes the virtual position guided (VPG) strategy for PSO algorithms. The VPG strategy calculates diversity values for two different populations and establishes a diversity baseline. It then dynamically guides the algorithm to conduct different search behaviors, through three phases - divergence, normal, and acceleration - in each iteration, based on the relationships among these diversity values and the baseline. Collectively, these phases orchestrate different schemes to balance exploration and exploitation, collaboratively steering the algorithm away from local optima and towards enhanced solution quality. The introduction of 'virtual position' caters to the strategy's adaptability across various PSO algorithms, ensuring the generality and effectiveness of the proposed VPG strategy. With a single hyperparameter and a recommended usual setup, VPG is easy to implement. The experimental results demonstrate that the VPG strategy is superior to several canonical and the state-of-the-art strategies for diversity guidance, and is effective in improving the search performance of most PSO algorithms on multimodal problems of various dimensionalities.

6.
Sci Total Environ ; 935: 173172, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740210

ABSTRACT

Chronic hypoxia can affect the growth and metabolism of fish and potentially impact gonadal development through epigenetic regulation. Trachinotus blochii (Golden pompano) is widely cultured near the coast and is sensitive to low oxygen conditions. We found that hypoxia and reoxygenation processes acted on multiple targets on the HPG axis, leading to endocrine disorders. Changes in the expression of key genes in the brain (gnrh), pituitary (fsh and lh), ovaries (cyp19a1a, foxl2, and er), and testes (dmrt1, ar, sox9, and gsdf) were associated with significant decreases in estrogen and testosterone levels. Hypoxia and reoxygenation lead to changes in DNA methylation levels in the gonads. Hypoxia upregulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in females and dnmt3a and dnmt3b in males, while reoxygenation down-regulated the expression of dnmt1, dnmt3a, dnmt3b, tet1, and tet2 in males. Whole genome methylation sequencing showed that the number of differentially methylated regions was highest on chromosome 10 (5192) and lowest on chromosome 24 (275). Differentially methylated genes in females and males, as well as between males and females, were enriched in the oxytocin signaling pathway, fatty acid metabolism pathway, and HIF-1a pathway. In summary, hypoxia and reoxygenation can induce endocrine disorders, affect the expression of HPG axis genes, change the methylation pattern and modification pattern of gonad DNA, and then have potential effects on gonad development.

7.
Nat Commun ; 15(1): 4414, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38782889

ABSTRACT

The ultrahigh flexibility and elasticity achieved in freestanding single-crystalline ferroelectric oxide membranes have attracted much attention recently. However, for antiferroelectric oxides, the flexibility limit and fundamental mechanism in their freestanding membranes are still not explored clearly. Here, we successfully fabricate freestanding single-crystalline PbZrO3 membranes by a water-soluble sacrificial layer technique. They exhibit good antiferroelectricity and have a commensurate/incommensurate modulated microstructure. Moreover, they also have good shape recoverability when bending with a small radius of curvature (about 2.4 µm for the thickness of 120 nm), corresponding to a bending strain of 2.5%. They could tolerate a maximum bending strain as large as 3.5%, far beyond their bulk counterpart. Our atomistic simulations reveal that this remarkable flexibility originates from the antiferroelectric-ferroelectric phase transition with the aid of polarization rotation. This study not only suggests the mechanism of antiferroelectric oxides to achieve high flexibility but also paves the way for potential applications in flexible electronics.

8.
Sci Total Environ ; 931: 172997, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38714256

ABSTRACT

Diatoms and dinoflagellates are two typical functional groups of phytoplankton, playing important roles in ecosystem processes and biogeochemical cycles. Changes in diatoms and dinoflagellates are thought to be one of the possible mechanisms for the increase in harmful algal blooms (HABs), due to changing hydrological conditions associated with climate change and human activities. However, little is known about their ability to adapt to changing ocean environments, thus making it difficult to know whether and how they are adapting. By analyzing a 44-year monitoring dataset in the central Bohai Sea during 1978-2021, we found that the abundance ratio of diatoms to dinoflagellates showed a decreasing trend seasonally and ecologically, indicating that the phytoplankton community underwent distinct successional processes from diatom dominance to diatom-dinoflagellate co-dominance. These processes exhibited varying responses to temperature, nutrient concentrations and ratios, and their interactions, of which temperature primarily drove the seasonal succession whereas nutrients were responsible for the ecological succession. Specifically, diatoms showed a preference for lower temperatures and higher DIP concentrations, and were able to tolerate lower DIN at lower temperatures. In contrast, dinoflagellates tended to prevail at conditions of warming and high N/P ratios. These different traits of diatoms and dinoflagellates reflected the fact that warming as a result of rising temperature and eutrophication as a consequence of nutrient input would favor dinoflagellates over diatoms. Moreover, the increasing dominance of dinoflagellates indicated that dinoflagellate blooms were likely to become more frequent and intense in the central Bohai Sea.


Subject(s)
Climate Change , Diatoms , Dinoflagellida , Eutrophication , Temperature , Phytoplankton , Nutrients/analysis , Environmental Monitoring , China , Harmful Algal Bloom , Ecosystem , Seasons
9.
Water Res ; 258: 121803, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38795548

ABSTRACT

Nano zero-valent metals (nZVMs) have been extensively utilized for decades in the reductive remediation of groundwater contaminated with chlorinated organic compounds, owing to their robust reducing capabilities, simple application, and cost-effectiveness. Nevertheless, there remains a dearth of information regarding the efficient reductive defluorination of linear or branched per- and polyfluoroalkyl substances (PFASs) using nZVMs as reductants, largely due to the absence of appropriate catalysts. In this work, various soluble porphyrin ligands [[meso­tetra(4-carboxyphenyl)porphyrinato]cobalt(III)]Cl·7H2O (CoTCPP), [[meso­tetra(4-sulfonatophenyl) porphyrinato]cobalt(III)]·9H2O (CoTPPS), and [[meso­tetra(4-N-methylpyridyl) porphyrinato]cobalt(II)](I)4·4H2O (CoTMpyP) have been explored for defluorination of PFASs in the presence of the nZn0 as reductant. Among these, the cationic CoTMpyP showed best defluorination efficiencies for br-perfluorooctane sulfonate (PFOS) (94%), br-perfluorooctanoic acid (PFOA) (89%), and 3,7-Perfluorodecanoic acid (PFDA) (60%) after 1 day at 70 °C. The defluorination rate constant of this system (CoTMpyP-nZn0) is 88-164 times higher than the VB12-nZn0 system for the investigated br-PFASs. The CoTMpyP-nZn0 also performed effectively at room temperature (55% for br-PFOS, 55% for br-PFOA and 25% for 3,7-PFDA after 1day), demonstrating the great potential of in-situ application. The effect of various solubilizing substituents, electron transfer flow and corresponding PFASs defluorination pathways in the CoTMpyP-nZn0 system were investigated by both experiments and density functional theory (DFT) calculations. SYNOPSIS: Due to the unavailability of active catalysts, available information on reductive remediation of PFAS by zero-valent metals (ZVMs) is still inadequate. This study explores the effective defluorination of various branched PFASs using soluble porphyrin-ZVM systems and offers a systematic approach for designing the next generation of catalysts for PFAS remediation.

10.
J Alzheimers Dis ; 99(2): 577-593, 2024.
Article in English | MEDLINE | ID: mdl-38701145

ABSTRACT

Background: Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) account for the vast majority of neurodegenerative dementias. AD and FTLD have different clinical phenotypes with a genetic overlap between them and other dementias. Objective: This study aimed to identify the genetic spectrum of sporadic AD and FTLD in the Chinese population. Methods: A total of 74 sporadic AD and 29 sporadic FTLD participants were recruited. All participants underwent whole-exome sequencing (WES) and testing for a hexanucleotide expansion in C9orf72 was additionally performed for participants with negative WES results. Results: Four known pathogenic or likely pathogenic variants, including PSEN1 (p.G206D), MAPT (p.R5H), LRRK2 (p.W1434*), and CFAP43 (p.C934*), were identified in AD participants, and 1 novel pathogenic variant of ANXA11 (p.D40G) and two known likely pathogenic variants of MAPT (p.D177V) and TARDBP (p.I383V) were identified in FTLD participants. Twenty-four variants of uncertain significance as well as rare variants in risk genes for dementia, such as ABCA7, SORL1, TRPM7, NOS3, MPO, and DCTN1, were also found. Interestingly, several variants in participants with semantic variant primary progressive aphasia were detected. However, no participants with C9orf72 gene variants were found in the FTLD cohort. Conclusions: There was a high frequency of genetic variants in Chinese participants with sporadic AD and FTLD and a complex genetic overlap between these two types of dementia and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease , Asian People , Frontotemporal Lobar Degeneration , Genetic Testing , Humans , Male , Female , Alzheimer Disease/genetics , Frontotemporal Lobar Degeneration/genetics , Aged , Genetic Testing/methods , Asian People/genetics , Middle Aged , Exome Sequencing , China/epidemiology , C9orf72 Protein/genetics , Aged, 80 and over , Genetic Predisposition to Disease/genetics , East Asian People
11.
ACS Sens ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809959

ABSTRACT

As trimethylamine (TMA) is widely used in agriculture and industry, inhalation of TMA can cause very serious negative effects on human health. However, most of the current gas sensors for detecting TMA are commonly performed at high temperatures and cannot meet market needs. Inspired by this, we prepared imine covalent organic frameworks (TB-COF) synthesized from two monomers, 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 1,3,5-benzotricarboxaldehyde (BTCA), using acetic acid as a catalyst at room temperature. Based on this, three sensors were prepared for gas sensitivity testing, namely, TA, BT, and TB-COF sensors. The three sensors were tested for 15 different gases at room temperature. From the whole gas sensitivity data, the TB-COF sensor made by compositing TA and BT has a higher sensitivity (6845.9%) to TMA at 500 ppm, which is 6.1 and 5.4 times higher than the response of TA and BT sensors, respectively. The TB-COF sensor adsorbs and desorbs TMA in a controlled 23 s cycle with a low detection limit of 28.6 ppb. This result indicates that TB-COF prepared at room temperature can be used as a gas-sensitive sensing material for real-time monitoring of TMA. The gas sensing results demonstrate the great potential of COFs for sensor development and application and provide ideas for further development of COFs-based gas sensors.

12.
J Nanobiotechnology ; 22(1): 283, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789980

ABSTRACT

BACKGROUND: Endothelial cell (EC)-driven intraneural revascularization (INRV) and Schwann cells-derived exosomes (SCs-Exos) both play crucial roles in peripheral nerve injury (PNI). However, the interplay between them remains unclear. We aimed to elucidate the effects and underlying mechanisms of SCs-Exos on INRV following PNI. RESULTS: We found that GW4869 inhibited INRV, as well as that normoxic SCs-Exos (N-SCs-Exos) exhibited significant pro-INRV effects in vivo and in vitro that were potentiated by hypoxic SCs-Exos (H-SCs-Exos). Upregulation of glycolysis emerged as a pivotal factor for INRV after PNI, as evidenced by the observation that 3PO administration, a glycolytic inhibitor, inhibited the INRV process in vivo and in vitro. H-SCs-Exos more significantly enhanced extracellular acidification rate/oxygen consumption rate ratio, lactate production, and glycolytic gene expression while simultaneously suppressing acetyl-CoA production and pyruvate dehydrogenase E1 subunit alpha (PDH-E1α) expression than N-SCs-Exos both in vivo and in vitro. Furthermore, we determined that H-SCs-Exos were more enriched with miR-21-5p than N-SCs-Exos. Knockdown of miR-21-5p significantly attenuated the pro-glycolysis and pro-INRV effects of H-SCs-Exos. Mechanistically, miR-21-5p orchestrated EC metabolism in favor of glycolysis by targeting von Hippel-Lindau/hypoxia-inducible factor-1α and PDH-E1α, thereby enhancing hypoxia-inducible factor-1α-mediated glycolysis and inhibiting PDH-E1α-mediated oxidative phosphorylation. CONCLUSION: This study unveiled a novel intrinsic mechanism of pro-INRV after PNI, providing a promising therapeutic target for post-injury peripheral nerve regeneration and repair.


Subject(s)
Endothelial Cells , Exosomes , Glycolysis , Peripheral Nerve Injuries , Schwann Cells , Schwann Cells/metabolism , Exosomes/metabolism , Animals , Endothelial Cells/metabolism , Mice , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/therapy , Male , Rats , MicroRNAs/metabolism , MicroRNAs/genetics , Mice, Inbred C57BL , Neovascularization, Physiologic , Rats, Sprague-Dawley , Aniline Compounds , Benzylidene Compounds
13.
Foods ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790739

ABSTRACT

The quality of chrysanthemum tea has a great connection with its variety. Different types of chrysanthemum tea have very different efficacies and functions. Moreover, the discrimination of chrysanthemum tea varieties is a significant issue in the tea industry. Therefore, to correctly and non-destructively categorize chrysanthemum tea samples, this study attempted to design a novel feature extraction method based on the fuzzy set theory and improved direct linear discriminant analysis (IDLDA), called fuzzy IDLDA (FIDLDA), for extracting the discriminant features from the near-infrared (NIR) spectral data of chrysanthemum tea. To start with, a portable NIR spectrometer was used to collect NIR data for five varieties of chrysanthemum tea, totaling 400 samples. Secondly, the raw NIR spectra were processed by four different pretreatment methods to reduce noise and redundant data. Thirdly, NIR data dimensionality reduction was performed by principal component analysis (PCA). Fourthly, feature extraction from the NIR spectra was performed by linear discriminant analysis (LDA), IDLDA, and FIDLDA. Finally, the K-nearest neighbor (KNN) algorithm was applied to evaluate the classification accuracy of the discrimination system. The experimental results show that the discrimination accuracies of LDA, IDLDA, and FIDLDA could reach 87.2%, 94.4%, and 99.2%, respectively. Therefore, the combination of near-infrared spectroscopy and FIDLDA has great application potential and prospects in the field of nondestructive discrimination of chrysanthemum tea varieties.

14.
World J Clin Cases ; 12(8): 1474-1480, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38576812

ABSTRACT

BACKGROUND: Multilocular thymic cyst (MTC) is a rare mediastinal lesion which is considered to occur in the process of acquired inflammation. It is usually characterized by well-defined cystic density and is filled with transparent liquid. CASE SUMMARY: We report on a 39-year-old male with a cystic-solid mass in the anterior mediastinum. Computer tomography (CT) imaging showed that the mass was irregular with unclear boundaries. After injection of contrast agent, there was a slight enhancement of stripes and nodules. According to CT findings, it was diagnosed as thymic cancer. CONCLUSION: After surgery, MTC accompanied by bleeding and infection was confirmed by pathological examination. The main lesson of this case was that malignant thymic tumor and MTC of the anterior mediastinum sometimes exhibit similar CT findings. Caution is necessary in clinical work to avoid misdiagnosis.

15.
Nat Commun ; 15(1): 2813, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561336

ABSTRACT

CCCTC-binding factor (CTCF), a ubiquitously expressed and highly conserved protein, is known to play a critical role in chromatin structure. Post-translational modifications (PTMs) diversify the functions of protein to regulate numerous cellular processes. However, the effects of PTMs on the genome-wide binding of CTCF and the organization of three-dimensional (3D) chromatin structure have not been fully understood. In this study, we uncovered the PTM profiling of CTCF and demonstrated that CTCF can be O-GlcNAcylated and arginine methylated. Functionally, we demonstrated that O-GlcNAcylation inhibits CTCF binding to chromatin. Meanwhile, deficiency of CTCF O-GlcNAcylation results in the disruption of loop domains and the alteration of chromatin loops associated with cellular development. Furthermore, the deficiency of CTCF O-GlcNAcylation increases the expression of developmental genes and negatively regulates maintenance and establishment of stem cell pluripotency. In conclusion, these results provide key insights into the role of PTMs for the 3D chromatin structure.


Subject(s)
Genome , Protein Processing, Post-Translational , CCCTC-Binding Factor/metabolism , Cell Differentiation , Chromatin
16.
BMC Public Health ; 24(1): 1019, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609934

ABSTRACT

BACKGROUND: Students' physical fitness, particularly aerobic fitness, has seriously declined during the COVID-19 epidemic. However, in the post-epidemic era, there are few studies on the methods of improving aerobic fitness. Understanding the dose-response relationship between physical activity and aerobic fitness is crucial for developing effective exercise prescriptions. METHOD: This retrospective study reviewed the Fun Running program at Wannan Medical College in China. We conducted a pre-post study design to analyze the impact of 15 weeks of Fun Running training on aerobic fitness. Middle and long-distance running pace (MLDR-P) was used as the primary indicator of aerobic fitness. A paired sample T-test was used to analyze the differences between the two MLDR-Ps. Pearson's correlation was used to examine the correlation between variables. Multiple linear regression was used to determine the extent to which Fun Running components explain the variance in MLDR-P. RESULTS: A total of 3244 college students participated in this study. 15 weeks of Fun Running training can significantly improve the MLDR-P in both females (P < 0.001, ES = 0.68) and males (P < 0.001, ES = 0.72). The MLDR-P was significantly correlated with Fun Running (R2 = 0.95, p < 0.05, for females; R2 = 0.96, p < 0.05, for males). The component that had the greatest impact on MLDR-P was pace (ß = 1.39, for females; ß = 1.09, for males), followed by distance (ß = 0.49, for females; ß = 0.15, for males), and last frequency (ß = -0.03, for all). CONCLUSION: This study fills the gap in research on the dose-response relationship between running and aerobic fitness among college students in the post-epidemic era. The results show that 15 weeks of Fun Running training can significantly improve aerobic fitness. Examination of the dose-response relationship between Fun Running and MLDR-P provides practitioners with valuable insights into prescribing aerobic fitness training, allowing them to develop more effective training programs. Future research should focus on how to implement a hierarchical Fun Running program effectively.


Subject(s)
Exercise , Running , Female , Male , Humans , Retrospective Studies , Exercise Therapy , Physical Fitness
17.
Nat Commun ; 15(1): 3252, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627384

ABSTRACT

The adenosine A3 receptor (A3AR), a key member of the G protein-coupled receptor family, is a promising therapeutic target for inflammatory and cancerous conditions. The selective A3AR agonists, CF101 and CF102, are clinically significant, yet their recognition mechanisms remained elusive. Here we report the cryogenic electron microscopy structures of the full-length human A3AR bound to CF101 and CF102 with heterotrimeric Gi protein in complex at 3.3-3.2 Å resolution. These agonists reside in the orthosteric pocket, forming conserved interactions via their adenine moieties, while their 3-iodobenzyl groups exhibit distinct orientations. Functional assays reveal the critical role of extracellular loop 3 in A3AR's ligand selectivity and receptor activation. Key mutations, including His3.37, Ser5.42, and Ser6.52, in a unique sub-pocket of A3AR, significantly impact receptor activation. Comparative analysis with the inactive A2AAR structure highlights a conserved receptor activation mechanism. Our findings provide comprehensive insights into the molecular recognition and signaling of A3AR, paving the way for designing subtype-selective adenosine receptor ligands.


Subject(s)
Receptor, Adenosine A3 , Signal Transduction , Humans , Receptor, Adenosine A3/metabolism , Cryoelectron Microscopy
18.
J Clin Pharmacol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659369

ABSTRACT

Previous studies found that histamine H2 receptor antagonists (H2RAs) had blood pressure lowering and cardioprotective effects, but the impact of H2RAs on the survival outcomes of critically ill patients with essential hypertension is still unclear. The aim of this study was to investigate the association of H2RAs exposure with all-cause mortality in patients with essential hypertension based on Medical Information Mart for Intensive Care III database. A total of 17,739 patients were included, involving 8482 H2RAs users and 9257 non-H2RAs users. Propensity score matching (PSM) was performed to improve balance between 2 groups that were exposed to H2RAs or not. Kaplan-Meier survival curves were used to compare the cumulative survival rates and multivariable Cox regression models were performed to evaluate the association between H2RAs exposure and all-cause mortality. After 1:1 PSM, 4416 pairs of patients were enrolled. The results revealed potentially significant association between H2RAs exposure and decreased 30-day, 90-day, and 1-year mortalities in multivariate analyses (HR = 0.783, 95% CI: 0.696-0.882 for 30-day; HR = 0.860, 95% CI: 0.778-0.950 for 90-day; and HR = 0.883, 95% CI: 0.811-0.961 for 1-year mortality, respectively). Covariate effect analyses showed that the use of H2RAs was more beneficial in essential hypertension patients with age ≥ 60, BMI ≥ 25 kg/m2, coronary arteriosclerosis, stroke, and acute kidney failure, respectively. In conclusion, H2RAs exposure was related to lower mortalities in critically ill patients with essential hypertension, which provided novel potential strategy for the use of H2RAs in essential hypertension patients.

19.
Angew Chem Int Ed Engl ; : e202404329, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683742

ABSTRACT

A hitherto unknown class of C4-symmetric Caryl-Cß (C3, C8, C13, C18) axially chiral porphyrins has been synthesized and the application of their iridium (Ir) complexes in catalytic asymmetric C(sp3)-H functionalization is documented. Cyclotetramerization of enantioenriched axially chiral 2-hydroxymethyl-3-naphthyl pyrroles under mild acidic conditions affords, after oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), the C4-symmetric α,α,α,α-atropenantiomer as an only isolable diastereomer. Both regioisomeric Ir(Por*)(CO)(Cl) complexes catalyze the carbene C-H insertion reaction affording the same enantiomer, albeit with slight difference in enantioselectivity. With the optimum Ir-complex 3e, the 2-substituted arylacetic acid derivatives were generated from diazo compounds and cyclohexadiene in excellent yields and enantioselectivities.

20.
Plant Cell Environ ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623040

ABSTRACT

Phytoplasmic SAP11 effectors alter host plant architecture and flowering time. However, the exact mechanisms have yet to be elucidated. Two SAP11-like effectors, SJP1 and SJP2, from 'Candidatus Phytoplasma ziziphi' induce shoot branching proliferation. Here, the transcription factor ZjTCP7 was identified as a central target of these two effectors to regulate floral transition and shoot branching. Ectopic expression of ZjTCP7 resulted in enhanced bolting and earlier flowering than did the control. Interaction and expression assays demonstrated that ZjTCP7 interacted with the ZjFT-ZjFD module, thereby enhancing the ability of these genes to directly bind to the ZjAP1 promoter. The effectors SJP1 and SJP2 unravelled the florigen activation complex by specifically destabilising ZjTCP7 and ZjFD to delay floral initiation. Moreover, the shoot branching of the ZjTCP7-SRDX transgenic Arabidopsis lines were comparable to those of the SJP1/2 lines, suggesting the involvement of ZjTCP7 in the regulation of shoot branching. ZjTCP7 interacted with the branching repressor ZjBRC1 to enhance suppression of the auxin efflux carrier ZjPIN3 expression. ZjTCP7 also directly bound to and upregulated the auxin biosynthesis gene ZjYUCCA2, thereby promoting auxin accumulation. Our findings confirm that ZjTCP7 serves as a bifunctional regulator destabilised by the effectors SJP1 and SJP2 to modulate plant development.

SELECTION OF CITATIONS
SEARCH DETAIL
...