Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Haptics ; 15(2): 328-338, 2022.
Article in English | MEDLINE | ID: mdl-35171776

ABSTRACT

Haptic rendering enables people to touch, perceive, and manipulate virtual objects in a virtual environment. Using six cascaded identical hollow disk electromagnets and a small permanent magnet attached to an operator's finger, this paper proposes and develops an untethered haptic interface through magnetic field control. The concentric hole inside the six cascaded electromagnets provides the workspace, where the 3D position of the permanent magnet is tracked with a Microsoft Kinect sensor. The driving currents of six cascaded electromagnets are calculated in real-time for generating the desired magnetic force. Offline data from an FEA (finite element analysis) based simulation, determines the relationship between the magnetic force, the driving currents, and the position of the permanent magnet. A set of experiments including the virtual object recognition experiment, the virtual surface identification experiment, and the user perception evaluation experiment were conducted to demonstrate the proposed system, where Microsoft HoloLens holographic glasses are used for visual rendering. The proposed magnetic haptic display leads to an untethered and non-contact interface for natural haptic rendering applications, which overcomes the constraints of mechanical linkages in tool-based traditional haptic devices.


Subject(s)
Touch Perception , User-Computer Interface , Haptic Technology , Humans , Magnetic Fields , Touch
2.
J Mech Behav Biomed Mater ; 71: 136-147, 2017 07.
Article in English | MEDLINE | ID: mdl-28292707

ABSTRACT

To obtain hydroxyapatite (HA) coatings with high crystallinity which have long-term stability in clinical applications, coarse powders were usually injected to less energetic plasma. However, the HA coatings accumulated by partly melted particles usually have high porosity and poor mechanical properties, especially poor bonding strength. In this work, by profiting its quenching and mechanical impact, dry-ice blasting was in-situ employed during plasma spray process to improve the microstructure characterization and bonding strength of HA coatings. In addition, the influence of in-situ dry-ice blasting on the phase composition and crystallinity of plasma-sprayed HA coatings was investigated. The results show that a significant reduction of porosity and an apparent increase in bonding strength are revealed in plasma-sprayed HA coatings due to the cleaning effect of dry-ice blasting on the convex unmelted particles and splashing fragments. HA coatings prepared by the combination process of plasma spraying and dry-ice blasting have a compromise structure with minimum globular pores but with pronounced microcracks. The disappearance of CaO phase and the increase in crystallinity also derive from the application of dry-ice blasting.


Subject(s)
Coated Materials, Biocompatible/analysis , Dry Ice , Durapatite/analysis , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...