Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Zool Res ; 43(1): 64-74, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-34845879

ABSTRACT

Retinal angiogenesis is a critical process for normal retinal function. However, uncontrolled angiogenesis can lead to pathological neovascularization (NV), which is closely related to most irreversible blindness-causing retinal diseases. Understanding the molecular basis behind pathological NV is important for the treatment of related diseases. Twist-related protein 1 (TWIST1) is a well-known transcription factor and principal inducer of epithelial-mesenchymal transition (EMT) in many human cancers. Our previous study showed that Twist1 expression is elevated in pathological retinal NV. To date, however, the role of TWIST1 in retinal pathological angiogenesis remains to be elucidated. To study the role of TWIST1 in pathological retinal NV and identify specific molecular targets for antagonizing pathological NV, we generated an inducible vascular endothelial cell (EC)-specific Twist1 transgenic mouse model ( Tg-Twist1 iEC+ ). Whole-mount retinas from Tg-Twist1 iEC+ mice showed retarded vascular progression and increased vascular density in the front end of the growing retinal vasculature, as well as aneurysm-like pathological retinal NV. Furthermore, overexpression of Twist1 in the ECs promoted cell proliferation but disturbed cell polarity, thus leading to uncontrolled retinal angiogenesis. TWIST1 promoted pathological NV by activating the Wnt/ß-catenin signaling pathway and inducing the expression of NV formation-related genes, thereby acting as a 'valve' in the regulation of pathological angiogenesis. This study identified the critical role of TWIST1 in retinal pathological NV, thus providing a potential therapeutic target for pathological NV.


Subject(s)
Neovascularization, Pathologic , Retinal Neovascularization , Rodent Diseases , Animals , Endothelial Cells , Mice , Mice, Transgenic , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/veterinary , Retinal Neovascularization/genetics , Retinal Neovascularization/veterinary , Twist-Related Protein 1/genetics
2.
Zool Res ; 42(5): 650-659, 2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34472226

ABSTRACT

Phosphatidylserine (PS) is distributed asymmetrically in the plasma membrane of eukaryotic cells. Phosphatidylserine flippase (P4-ATPase) transports PS from the outer leaflet of the lipid bilayer to the inner leaflet of the membrane to maintain PS asymmetry. The ß subunit TMEM30A is indispensable for transport and proper function of P4-ATPase. Previous studies have shown that the ATP11A and TMEM30A complex is the molecular switch for myotube formation. However, the role of Tmem30a in skeletal muscle regeneration remains elusive. In the current study, Tmem30a was highly expressed in the tibialis anterior (TA) muscles of dystrophin-null ( mdx) mice and BaCl 2-induced muscle injury model mice. We generated a satellite cell (SC)-specific Tmem30a conditional knockout (cKO) mouse model to investigate the role of Tmem30a in skeletal muscle regeneration. The regenerative ability of cKO mice was evaluated by analyzing the number and diameter of regenerated SCs after the TA muscles were injured by BaCl 2-injection. Compared to the control mice, the cKO mice showed decreased Pax7 + and MYH3 + SCs, indicating diminished SC proliferation, and decreased expression of muscular regulatory factors (MYOD and MYOG), suggesting impaired myoblast proliferation in skeletal muscle regeneration. Taken together, these results demonstrate the essential role of Tmem30a in skeletal muscle regeneration.


Subject(s)
Membrane Proteins/metabolism , Muscle, Skeletal/physiology , Regeneration/physiology , Satellite Cells, Skeletal Muscle/metabolism , Animals , Cell Proliferation , Dystrophin/genetics , Dystrophin/metabolism , Estrogen Antagonists/toxicity , Gene Expression Regulation/physiology , Genotype , Membrane Proteins/genetics , Mice , Mice, Inbred mdx , Mice, Knockout , Muscle, Skeletal/drug effects , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenin/genetics , Myogenin/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Regeneration/genetics , Tamoxifen/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...