Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Cell Prolif ; : e13663, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803043

ABSTRACT

Macrophage pyroptosis is of key importance to host defence against pathogen infections and may participate in the progression and recovery of periodontitis. However, the role of pyroptotic macrophages in regulating periodontal ligament stem cells (PDLSCs), the main cell source for periodontium renewal, remains unclear. First, we found that macrophage pyroptosis were enriched in gingiva tissues from periodontitis patients compared with those of healthy people through immunofluorescence. Then the effects of pyroptotic macrophages on the PDLSC osteogenic differentiation were investigated in a conditioned medium (CM)-based coculture system in vitro. CM derived from pyroptotic macrophages inhibited the osteogenic differentiation-related gene and protein levels, ALP activity and mineralized nodule formation of PDLSCs. The osteogenic inhibition of CM was alleviated when pyroptosis was inhibited by VX765. Further, untargeted metabolomics showed that glutamate limitation may be the underlying mechanism. However, exogenous glutamate supplementation aggravated the CM-inhibited osteogenic differentiation of PDLSCs. Moreover, CM increased extracellular glutamate and decreased intracellular glutamate levels of PDLSCs, and enhanced the gene and protein expression levels of system xc - (a cystine/glutamate antiporter). After adding cystine to CM-based incubation, the compromised osteogenic potency of PDLSCs was rescued. Our data suggest that macrophage pyroptosis is related to the inflammatory lesions of periodontitis. Either pharmacological inhibition of macrophage pyroptosis or nutritional supplements to PDLSCs, can rescue the compromised osteogenic potency caused by pyroptotic macrophages.

2.
Org Biomol Chem ; 22(11): 2182-2186, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38390690

ABSTRACT

Three novel phragmalin-type limonoids, swieteliacates S-U (1-3), were isolated from Swietenia macrophylla leaves, alongside four previously identified limonoids (4-7). The structures, encompassing absolute configurations, were delineated through 1D and 2D NMR analyses, high-resolution mass spectrometry (HR-MS), and NMR and ECD calculations. Swieteliacate S (1) is a distinctive cryptate comprising a tricyclo[4.2.110,30.11,4]decane fragment and an additional five-membered oxygen ring. Compounds 3 and 5 exhibited inhibition rates of 26.08 ± 2.26% and 15.42 ± 3.66%, respectively, on triglyceride (TG) production in Hep G2 cells at 40 µM.


Subject(s)
Limonins , Meliaceae , Limonins/chemistry , Limonins/pharmacology , Molecular Structure , Magnetic Resonance Spectroscopy , Meliaceae/chemistry
3.
Chembiochem ; 25(3): e202300678, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38015421

ABSTRACT

Using myoglobin (Mb) as a model protein, we herein developed a facial approach to modifying the heme active site. A cavity was first generated in the heme distal site by F46 C mutation, and the thiol group of Cys46 was then used for covalently linked to exogenous ligands, 1H-1,2,4-triazole-3-thiol and 1-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione. The engineered proteins, termed F46C-triazole Mb and F46C-phenol Mb, respectively, were characterized by X-ray crystallography, spectroscopic and stopped-flow kinetic studies. The results showed that both the heme coordination state and the protein function such as H2 O2 activation and peroxidase activity could be efficiently regulated, which suggests that this approach might be generally applied to the design of functional heme proteins.


Subject(s)
Heme , Myoglobin , Myoglobin/chemistry , Myoglobin/genetics , Myoglobin/metabolism , Catalytic Domain , Heme/chemistry , Kinetics , Protein Conformation , Sulfhydryl Compounds
4.
Arch Gynecol Obstet ; 309(1): 287-293, 2024 01.
Article in English | MEDLINE | ID: mdl-37755532

ABSTRACT

PURPOSE: The aim of this study was to investigate the efficacy and safety of early cumulus cell removal (ECCR) during human in vitro fertilization (IVF). METHODS: A retrospective analysis was performed between January 2011 and December 2019. The study enrolled 1131 couples who underwent IVF treatment with ECCR. After propensity score matching at a 1:1 ratio, 1131 couples who underwent overnight coincubation of gametes were selected. The main outcome measure was the cumulative live birth rate. Secondary outcome measures included the cumulative pregnancy rate, polyspermy rate, available embryo rate, miscarriage rate, malformation rate, time to live birth, and oocyte-to-baby rate. RESULTS: There were no significant differences found between the two groups in the polyspermy rate, available embryo rate, miscarriage rate, time to live birth, oocyte-to-baby rate, and neonatal congenital anomalies rate. The results of the study showed that ECCR was associated with a significantly higher cumulative live birth rate and cumulative pregnancy rate, along with a significantly lower fertilization rate. CONCLUSIONS: ECCR tended to confer increased cumulative live birth rate and had no negative effect on the neonatal malformation rate.


Subject(s)
Abortion, Spontaneous , Birth Rate , Pregnancy , Female , Infant, Newborn , Humans , Pregnancy Outcome/epidemiology , Abortion, Spontaneous/epidemiology , Abortion, Spontaneous/etiology , Cohort Studies , Retrospective Studies , Cumulus Cells , Propensity Score , Fertilization in Vitro/adverse effects , Fertilization in Vitro/methods , Pregnancy Rate , Live Birth/epidemiology
5.
Huan Jing Ke Xue ; 44(11): 5997-6006, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973084

ABSTRACT

To study the pollution characteristics and sources of 16 PAHs in PM2.5 in Lanzhou, PM2.5 samples were collected in four seasons. GC-MS was employed to analyze the concentration of PAHs. Positive matrix factorization(PMF), trajectory cluster, and potential source contribution function(PSCF) were used to identify the sources of PAHs. The results indicated that the average concentration of PAHs in PM2.5 in Lanzhou decreased in the order of winter[(118±16.2) ng·m-3]>autumn[(50.8±21.6) ng·m-3]>spring[(22.2±8.87) ng·m-3]>summer[(4.65±1.32) ng·m-3]. The results of correlation analysis showed that PM2.5 and TPAHs in Lanzhou had an extremely significant negative correlation with temperature; an extremely significant positive correlation with atmospheric pressure; and a poor correlation with wind direction, wind speed, and relative humidity. The proportion of PAHs with 4-5 rings was much higher than that of those with 6 rings and 2-3 rings, with similar results across the four seasons. Source apportionment results illustrated that the contribution of industrial emissions and biomass and natural gas combustion were dominant in spring and summer seasons. Industrial emissions and coal combustion were dominant in autumn and winter, respectively. The vehicle emissions had no significant change across the four seasons. Trajectory cluster and PSCF analyses showed that the airflow coming from Mongolia, northeast Xinjiang, and Qinghai had important effects on the ambient air quality in Lanzhou.

6.
Org Biomol Chem ; 21(48): 9603-9609, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38014756

ABSTRACT

Significant efforts have been made in the design of artificial metalloenzymes. Myoglobin (Mb), an O2 carrier, has been engineered to exhibit different functions. Herein, we applied a series of engineered Mb mutants with peroxidase activity for biosynthesis of clofazimine (CFZ), a potential drug with a broad-spectrum antiviral activity, by integration with chemical synthesis. Two of those mutants, F43Y Mb and F43Y/T67R Mb, have been shown to efficiently catalyze the oxidative coupling of 2-N-(4-chlorophenyl) benzene-1,2-diamine (N-4-CPBDA) in the presence of H2O2, with 97% yields. The overall catalytic efficiency (kcat/Km) is 46-fold and 82-fold higher than that of WT Mb, respectively. By further combination of this reaction with chemical synthesis, the production of CFZ was accomplished with an isolated yield of 72%. These results showed that engineered Mbs containing the Tyr-heme cross-link (F43Y Mb and F43Y/T67R Mb) exhibit enhanced activity in the oxidative coupling reaction. This study also indicates that the combination of biocatalysis and chemical synthesis avoids the need for the separation of intermediate products, which offers a convenient approach for the total synthesis of the biological compound CFZ.


Subject(s)
Clofazimine , Myoglobin , Myoglobin/genetics , Myoglobin/chemistry , Hydrogen Peroxide/chemistry , Models, Molecular , Heme/chemistry
7.
Sci Rep ; 13(1): 14415, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37660205

ABSTRACT

Given the inconsistent results on the prognostic significance of epicardial adipose tissue (EAT), the purpose of the present study was to investigate the association of EAT thickness and myocardial work by non-invasive left ventricular pressure-strain loop in people with suspected metabolic syndrome (MS). A total of 194 participants imaged with echocardiography were evaluated. In accordance with the median EAT thickness, MS patients fell into thin EAT group and thick EAT group. Conventional echocardiographic parameters, global longitudinal strain (GLS) and the global myocardial work parameters obtained by pressure-strain loop analysis, comprising the global work index (GWI), global work efficiency (GWE), global constructive work (GCW) and global wasted work (GWW) were compared between the two groups. In comparison with the thin EAT group, thick EAT group achieved significantly higher values in interventricular septal thickness, end-diastolic left ventricular posterior wall thickness, left ventricular mass index and GWW (p < 0.05). while the absolute value of GLS, GWI, GCW, and GWE were notably lower in the thick EAT group (p < 0.001). EAT thickness showed a significant correlation with GWI and GCW (r = - 0.328, p = 0.001; r = - 0.253, p = 0.012), and also independently correlated with GWI and GCW in the multivariate regression analysis (ß = - 0.310, p = 0.001; ß = - 0.199, p = 0.049). EAT thickness is associated with left ventricular myocardial function in subjects with suspected metabolic syndrome, independently of other risk factors. Further studies are supposed to ensure the causal associations and related mechanisms.


Subject(s)
Metabolic Syndrome , Humans , Metabolic Syndrome/diagnostic imaging , Ventricular Pressure , Adipose Tissue/diagnostic imaging , Risk Factors , Diastole
8.
Waste Manag ; 171: 365-374, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37757615

ABSTRACT

Incineration of organic solid wastes is accompanied by the heavy metal emission through flue gas. As an inexpensive and efficient heavy metal adsorbent, the improvement of kaolinite adsorption performance for heavy metals has drawn widespread interests. In this work, the interaction mechanisms between various kaolinite surfaces and Cd/Pb species are explored through first principles calculations. The results show that the combination of Fe doping and dehydroxylation enhances the activity of kaolinite surfaces, analysis of adsorption configurations reveal that both Cd and Pb species are immobilized through chemisorption on the -H + Fe surface. At the microscopic level, further electronic structure analysis shows that the composite modified kaolinite surface has more electron transfer and more pronounced orbital hybridization and overlap compared to the original kaolinite surface, demonstrating that the modification means of dehydroxylation and Fe doping indeed enhanced the activity of the kaolinite surface, especially the activity of the O atoms in the vicinity of the Fe atom and that the O atoms are more efficiently bonded as ionic connecting Cd/Pb species for the purpose of trapping Cd/Pb species. This study points out the research direction and provides basic theoretical support for the development of new kaolinite adsorbents in the future.

9.
Inorg Chem ; 62(40): 16294-16298, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37772803

ABSTRACT

It is desired to design and construct more efficient enzymes with better performance to catalyze carbene N-H insertions for the synthesis of bioactive molecules. To this end, we exploited and designed a series of human neuroglobin (Ngb) mutants. As shown in this study, a double mutant, A15C/H64G Ngb, with an additional disulfide bond and a modified heme active site, exhibited yields up to >99% and total turnover numbers up to 33000 in catalyzing the carbene N-H insertions for aromatic amine derivatives, including those with a large size such as 1-aminopyrene. Moreover, for o-phenylenediamine derivatives, they underwent two cycles of N-H insertions, followed by cyclization to form quinoxalinones, as confirmed by the X-ray crystal structures. This study suggests that Ngb can be designed into a functional carbene transferase for efficiently catalyzing carbene N-H insertion reactions with a range of substrates. It also represents the first example of the formation of quinoxalinones catalyzed by an engineered heme enzyme.

10.
Front Endocrinol (Lausanne) ; 14: 1152845, 2023.
Article in English | MEDLINE | ID: mdl-37351108

ABSTRACT

Diabetes mellitus is an established risk factor for periodontal disease that can aggravate the severity of periodontal inflammation and accelerate periodontal destruction. The chronic high glucose condition is a hallmark of diabetes-related pathogenesis, and has been demonstrated to impair the osteogenic differentiation of periodontal ligament stem cells (PDLSCs), leading to delayed recovery of periodontal defects in diabetic patients. Reactive oxygen species (ROS) are small molecules that can influence cell fate determination and the direction of cell differentiation. Although excessive accumulation of ROS has been found to be associated with high glucose-induced cell damage, the underlying mechanisms remain unclear. Nicotinamide adenine dinucleotide phosphate (NADPH) is an important electron donor and functions as a critical ROS scavenger in antioxidant systems. It has been identified as a key mediator of various biological processes, including energy metabolism and cell differentiation. However, whether NADPH is involved in the dysregulation of ROS and further compromise of PDLSC osteogenic differentiation under high glucose conditions is still not known. In the present study, we found that PDLSCs incubated under high glucose conditions showed impaired osteogenic differentiation, excessive ROS accumulation and increased NADPH production. Furthermore, after inhibiting the synthesis of NADPH, the osteogenic differentiation of PDLSCs was significantly enhanced, accompanied by reduced cellular ROS accumulation. Our findings demonstrated the crucial role of NADPH in regulating cellular osteogenic differentiation under high glucose conditions and suggested a new target for rescuing high glucose-induced cell dysfunction and promoting tissue regeneration in the future.


Subject(s)
Osteogenesis , Periodontal Ligament , Humans , NADP/metabolism , Reactive Oxygen Species/metabolism , Periodontal Ligament/metabolism , Cell Differentiation , Stem Cells/metabolism , Glucose/pharmacology , Glucose/metabolism
11.
Cell Prolif ; 56(8): e13411, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36720715

ABSTRACT

Although obesity has been proposed as a risk factor for periodontitis, the influence of excessive fat accumulation on the development of periodontitis and periodontal recovery from disease remains largely unknown. This study investigated the cellular response of periodontal ligament stem cells (PDLSCs) to elevated levels of a specific fatty acid, namely, palmitic acid (PA). The mechanism by which PA exposure compromises the osteogenic potential of cells was also explored. It was found that exposure of PDLSCs to abundant PA led to decreased cell osteogenic differentiation. Given that long non-coding RNAs (lncRNAs) play a key role in the stem cell response to adverse environmental stimuli, we screened the lncRNAs that were differentially expressed in PDLSCs following PA exposure using lncRNA microarray analysis, and AC018926.2 was identified as the lncRNA that was most sensitive to PA. Next, gain/loss-of-function studies illustrated that AC018926.2 was an important regulator in PA-mediated osteogenic differentiation of PDLSCs. Mechanistically, AC018926.2 upregulated integrin α2 (ITGA2) expression and therefore activated ITGA2/FAK/AKT signalling. Further functional studies revealed that inactivation of ITGA2/FAK/AKT signalling by silencing ITGA2 counteracted the pro-osteogenic effect induced by AC018926.2 overexpression. Moreover, the results of bioinformatics analysis and RNA immunoprecipitation assay suggested that AC018926.2 might transcriptionally regulate ITGA2 expression by binding to PARP1 protein. Our data suggest that AC018926.2 may serve as a therapeutic target for the management of periodontitis in obese patients.


Subject(s)
Periodontitis , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Osteogenesis/genetics , Palmitic Acid/pharmacology , Palmitic Acid/metabolism , Integrin alpha2/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Periodontal Ligament , Stem Cells , Cell Differentiation/physiology , Periodontitis/genetics , Periodontitis/metabolism , Cells, Cultured
12.
Biochemistry ; 62(2): 369-377, 2023 01 17.
Article in English | MEDLINE | ID: mdl-34665595

ABSTRACT

The design of functional metalloenzymes is attractive for the biosynthesis of biologically important compounds, such as phenoxazinones and phenazines catalyzed by native phenoxazinone synthase (PHS). To design functional heme enzymes, we used myoglobin (Mb) as a model protein and introduced an artificial CXXC motif into the heme distal pocket by F46C and L49C mutations, which forms a de novo disulfide bond, as confirmed by the X-ray crystal structure. We further introduced a catalytic Tyr43 into the heme distal pocket and found that the F43Y/F46C/L49C Mb triple mutant and the previously designed F43Y/F46S Mb exhibit PHS-like activity (80-98% yields in 5-15 min), with the catalytic efficiency exceeding those of natural metalloenzymes, including o-aminophenol oxidase, laccase, and dye-decolorizing peroxidase. Moreover, we showed that the oxidative coupling product of 1,6-disulfonic-2,7-diaminophenazine is a potential pH indicator, with the orange-magenta color change at pH 4-5 (pKa = 4.40). Therefore, this study indicates that functional heme enzymes can be rationally designed by structural modifications of Mb, exhibiting the functionality of the native PHS for green biosynthesis.


Subject(s)
Metalloproteins , Myoglobin , Myoglobin/chemistry , Heme/chemistry , Oxazines , Nitric Oxide Synthase
13.
Neural Regen Res ; 18(7): 1607-1612, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36571369

ABSTRACT

The retinal ganglion cells of the optic nerve have a limited capacity for self-repair after injury. Valproate is a histone deacetylase inhibitor and multitarget drug, which has been demonstrated to protect retinal neurons. In this study, we established rat models of optic nerve-crush injury and injected valproate into the vitreous cavity immediately after modeling. We evaluated changes in the ultrastructure morphology of the endoplasmic reticulum of retinal ganglion cells over time via transmission electron microscope. Immunohistochemistry and western blot assay revealed that valproate upregulated the expression of the endoplasmic reticulum stress marker glucose-regulated protein 78 and downregulated the expression of transcription factor C/EBP homologous protein, phosphorylated eukaryotic translation initiation factor 2α, and caspase-12 in the endoplasmic reticulum of retinal ganglion cells. These findings suggest that valproate reduces apoptosis of retinal ganglion cells in the rat after optic nerve-crush injury by attenuating phosphorylated eukaryotic translation initiation factor 2α-C/EBP homologous protein signaling and caspase-12 activation during endoplasmic reticulum stress. These findings represent a newly discovered mechanism that regulates how valproate protects neurons.

14.
Int Dent J ; 73(3): 417-422, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36272821

ABSTRACT

BACKGROUND: We aimed to comprehensively examine how the anatomic characteristics of asymptomatic third molars (As-M3s) affect distal pathologies of adjacent second molars (Ad-M2s). MATERIALS AND METHODS: Patients with at least 1 quadrant having intact As-M3s and first and second molars were enrolled. Distal pathologies of Ad-M2s, including caries, pocket depth of 4 mm or more (PD4+), and alveolar bone loss of 3 mm or more (ABL3+), were analysed based on As-M3 status (absent/impacted/nonimpacted). Especially within nonimpacted M3s (N-M3s), the effects of regions (maxillary vs mandibular) and dental intervals (narrow vs wide) on Ad-M2 pathologies were further compared. RESULTS: A total of 248 patients with their 805 quadrants were finally included in this cross-sectional study. The impacted and nonimpacted As-M3s elevated the risk of any distal pathology (caries, PD4+, or ABL3+) of Ad-M2s vs M3 absence with odds ratios (ORs) of 8.33 and 3.27, respectively. Within N-M3s, mandibular regions increased the odds of PD4+ (OR, 1.96); wide dental intervals increased the odds of ABL3+ (OR, 3.01). However, maxillary regions and narrow dental intervals contributed to more severe bone loss in Ad-M2s with ABL3+. CONCLUSIONS: The presence of As-M3 is a risk factor for Ad-M2 pathologies irrespective of impaction status. Within N-M3s, Ad-M2 pathologies are significantly influenced by anatomic characteristics such as regions and dental intervals.


Subject(s)
Dental Caries , Tooth, Impacted , Humans , Molar, Third , Cross-Sectional Studies , Molar , Tooth, Impacted/pathology , Dental Caries/pathology
15.
J Clin Med ; 11(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36498768

ABSTRACT

Third molars (M3s) can increase the pathological risks of neighboring second molars (M2s). However, whether the M3 presence affects M2 loss remains unknown. This retrospective study aimed to reveal the reasons for M2 loss and how M2 loss relates to neighboring M3s. The medical records and radiographic images of patients with removed M2(s) were reviewed to analyze why the teeth were extracted and if those reasons were related to adjacent M3s. Ultimately, 800 patients with 908 removed M2s were included. In the included quadrants, 526 quadrants with M3s were termed the M3 (+) group, and the other 382 quadrants without M3s were termed the M3 (−) group. The average age of patients in the M3 (+) group was 52.4 ± 14.8 years and that of the M3 (−) group was 56.7 ± 14.9 years, and the difference between the two groups was statistically significant (p < 0.001). Of the 908 M2s, 433 (47.7%) were removed due to caries and sequelae and 300 (33.0%) were removed due to periodontal diseases. Meanwhile, 14.4% of the M2s with adjacent M3s were removed due to distal caries and periodontitis, which were closely related to the neighboring M3s; this percentage was much lower when M3 were absent (1.8%). Additionally, 42.2% of M3s were removed simultaneously with neighboring M2s. The presence of M3s, regardless of impaction status, was associated with an earlier loss of their neighboring M2s.

16.
Molecules ; 27(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36557794

ABSTRACT

Tetracyclines are one class of widely used antibiotics. Meanwhile, due to abuse and improper disposal, they are often detected in wastewater, which causes a series of environmental problems and poses a threat to human health and safety. As an efficient and environmentally friendly method, enzymatic catalysis has attracted much attention. In previous studies, we have designed an efficient peroxidase (F43Y/P88W/F138W Mb, termed YWW Mb) based on the protein scaffold of myoglobin (Mb), an O2 carrier, by modifying the heme active center and introducing two Trp residues. In this study, we further applied it to degrade the tetracycline antibiotics. Both UV-Vis and HPLC studies showed that the triple mutant YWW Mb was able to catalyze the degradation of tetracycline, oxytetracycline, doxycycline, and chlortetracycline effectively, with a degradation rate of ~100%, ~98%, ~94%, and ~90%, respectively, within 5 min by using H2O2 as an oxidant. These activities are much higher than those of wild-type Mb and other heme enzymes such as manganese peroxidase. As further analyzed by UPLC-ESI-MS, we identified multiple degradation products and thus proposed possible degradation mechanisms. In addition, the toxicity of the products was analyzed by using in vitro antibacterial experiments of E. coli. Therefore, this study indicates that the engineered heme enzyme has potential applications for environmental remediation by degradation of tetracycline antibiotics.


Subject(s)
Myoglobin , Tetracycline , Humans , Myoglobin/chemistry , Peroxidase , Hydrogen Peroxide , Escherichia coli/genetics , Escherichia coli/metabolism , Peroxidases/chemistry , Anti-Bacterial Agents/pharmacology , Tetracyclines , Heme/chemistry
17.
Org Lett ; 24(36): 6494-6498, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36069471

ABSTRACT

Herein, a new strategy for the enantioselective synthesis of axially chiral N-aryl succinimides was devised by [3 + 2] annulation of MBH carbonates and N-aryl maleimides under chiral phosphine. This desymmetrization process allows for quick construction of both two stereogenic carbon centers and a remote CAr-N atropisomeric chirality. A series of structurally diverse N-aryl succinimides were obtained with good to excellent yields, diastereoselectivities, and enantioselectivities. The process is mild, efficient, and scalable and features a broad substrate scope.

18.
World J Gastroenterol ; 28(34): 5023-5035, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36160645

ABSTRACT

BACKGROUND: Data that assess maternal and infant outcomes in hepatitis C virus (HCV)-infected mothers are limited. AIM: To investigate the frequency of complications and the associated risk factors. METHODS: We performed a cohort study to compare pregnancy and fetal outcomes of HCV-viremic mothers with those of healthy mothers. Risk factors were analyzed with logistic regression. RESULTS: Among 112 consecutive HCV antibody-positive mothers screened, we enrolled 79 viremic mothers. We randomly selected 115 healthy mothers from the birth registry as the control. Compared to healthy mothers, HCV mothers had a significantly higher frequency of anemia [2.6% (3/115) vs 19.0% (15/79), P < 0.001] during pregnancy, medical conditions that required caesarian section [27.8% (32/115) vs 48.1% (38/79), P = 0.004], and nuchal cords [9.6% (11/115) vs 34.2% (27/79), P < 0.001]. In addition, the mean neonatal weight in the HCV group was significantly lower (3278.3 ± 462.0 vs 3105.1 ± 459.4 gms; P = 0.006), and the mean head circumference was smaller (33.3 ± 0.6 vs 33.1 ± 0.7 cm; P = 0.03). In a multivariate model, HCV-infected mothers were more likely to suffer anemia [adjusted odds ratio (OR): 18.1, 95% confidence interval (CI): 4.3-76.6], require caesarian sections (adjusted OR: 2.6, 95%CI: 1.4-4.9), and have nuchal cords (adjusted OR: 5.6, 95%CI: 2.4-13.0). Their neonates were also more likely to have smaller head circumferences (adjusted OR: 2.1, 95%CI: 1.1-4.3) and lower birth weights than the average (≤ 3250 gms) with an adjusted OR of 2.2 (95%CI: 1.2-4.0). The vertical transmission rate was 1% in HCV-infected mothers. CONCLUSION: Maternal HCV infections may associate with pregnancy and obstetric complications. We demonstrated a previously unreported association between maternal HCV viremia and a smaller neonatal head circumference, suggesting fetal growth restriction.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Pregnancy Complications, Infectious , Cohort Studies , Female , Hepacivirus/genetics , Hepatitis C/complications , Hepatitis C/diagnosis , Hepatitis C/epidemiology , Hepatitis C, Chronic/complications , Humans , Infant , Infant, Newborn , Infectious Disease Transmission, Vertical/prevention & control , Mothers , Pregnancy , Pregnancy Complications, Infectious/epidemiology , RNA, Viral , Viremia/epidemiology
19.
Genes (Basel) ; 13(9)2022 09 02.
Article in English | MEDLINE | ID: mdl-36140746

ABSTRACT

INTRODUCTION: Osteogenesis imperfecta (OI) is a rare mendelian skeletal dysplasia with autosomal dominant or recessive inheritance pattern, and almost the most common primary osteoporosis in prenatal settings. The diversity of clinical presentation and genetic etiology in prenatal OI cases presents a challenge to counseling yet has seldom been discussed in previous studies. METHODS: Ten cases with suspected fetal OI were enrolled and submitted to a genetic detection using conventional karyotyping, chromosomal microarray analysis (CMA), and whole-exome sequencing (WES). Sanger sequencing was used as the validation method for potential diagnostic variants. In silico analysis of specific missense variants was also performed. RESULTS: The karyotyping and CMA results of these cases were normal, while WES identified OI-associated variants in the COL1A1/2 genes in all ten cases. Six of these variants were novel. Additionally, four cases here exhibited distinctive clinical and/or genetic characteristics, including the situations of intrafamilial phenotypic variability, parental mosaicism, and "dual nosogenesis" (mutations in collagen I and another gene). CONCLUSION: Our study not only expands the spectrum of COL1A1/2-related OI, but also highlights the complexity that occurs in prenatal OI and the importance of clarifying its pathogenic mechanisms.


Subject(s)
Collagen Type I, alpha 1 Chain/genetics , Collagen Type I/genetics , Osteogenesis Imperfecta , Female , Humans , Mutation , Osteogenesis Imperfecta/genetics , Pregnancy , Exome Sequencing
20.
Biomaterials ; 288: 121743, 2022 09.
Article in English | MEDLINE | ID: mdl-36030103

ABSTRACT

Although substantial data indicate that the osteogenic potential of periodontal ligament stem cells (PDLSCs) is compromised under inflammatory conditions, the underlying mechanism remains largely unexplored. In this study, we found that both the autophagy levels and autophagic flux levels were decreased in PDLSCs incubated under inflammatory conditions (I-PDLSCs). Based on the increased expression of LC3 II (at an autophagy level) and decreased accumulation of LC3 II (at an autophagic flux level) in I-PDLSCs, we speculated that the disruption of I-PDLSC autophagy arose from dysfunction of the cellular autophagy-lysosome system. Subsequently, our hypothesis was demonstrated by inhibited autophagosome-lysosome fusion, damaged lysosomal function, and suppressed activation of transcription factor EB (TFEB, a master regulator of the autophagy-lysosome system) in I-PDLSCs and verified by TFEB overexpression in I-PDLSCs. We found that gold nanoparticle (Au NP) treatment rescued the osteogenic potential of I-PDLSCs by restoring the inflammation-compromised autophagy-lysosome system. In this context, Au NP ceased to be effective when TFEB was knocked down in PDLSCs. Our data demonstrate the crucial role of the autophagy-lysosome system in cellular osteogenesis under inflammatory conditions and suggest a new target for rescuing inflammation-induced cell dysfunction using nanomaterials to aid cell biology and tissue regeneration.


Subject(s)
Metal Nanoparticles , Osteogenesis , Autophagy , Cell Differentiation/physiology , Cells, Cultured , Gold/metabolism , Humans , Inflammation/metabolism , Lysosomes/metabolism , Osteogenesis/physiology , Periodontal Ligament , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...