Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(19): 5831-5837, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38708822

ABSTRACT

Single lanthanide (Ln) ion doped upconversion nanoparticles (UCNPs) exhibit great potential for biomolecule sensing and counting. Plasmonic structures can improve the emission efficiency of single UCNPs by modulating the energy transferring process. Yet, achieving robust and large-area single UCNP emission modulation remains a challenge, which obstructs investigation and application of single UCNPs. Here, we present a strategy using metal nanohole arrays (NHAs) to achieve energy-transfer modulation on single UCNPs simultaneously within large-area plasmonic structures. By coupling surface plasmon polaritons (SPPs) with higher-intermediate state (1D2 → 3F3, 1D2 → 3H4) transitions, we achieved a remarkable up to 10-fold enhancement in 800 nm emission, surpassing the conventional approach of coupling SPPs with an intermediate ground state (3H4 → 3H6). We numerically simulate the electrical field distribution and reveal that luminescent enhancement is robust and insensitive to the exact location of particles. It is anticipated that the strategy provides a platform for widely exploring applications in single-particle quantitative biosensing.

2.
Sci Adv ; 9(36): eadh2140, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37683007

ABSTRACT

Blue perovskite light-emitting diodes (LEDs) have shown external quantum efficiencies (EQEs) of more than 10%; however, devices that emit in the true blue-those that accord with the emission wavelength required for Rec. 2100 primary blue-have so far been limited to EQEs of ~6%. We focused here on true blue emitting CsPbBr3 colloidal nanocrystals (c-NCs), finding in early studies that they suffer from a high charge injection barrier, a problem exacerbated in films containing multiple layers of nanocrystals. We introduce a self-assembled monolayer (SAM) active layer that improves charge injection. We identified a bifunctional capping ligand that simultaneously enables the self-assembly of CsPbBr3 c-NCs while passivating surface traps. We report, as a result, SAM-based LEDs exhibit a champion EQE of ~12% [CIE of (0.132, 0.069) at 4.0 V with a luminance of 11 cd/m2], and 10-fold-enhanced operating stability relative to the best previously reported Rec. 2100-blue perovskite LEDs.

3.
JACS Au ; 3(3): 860-867, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006769

ABSTRACT

Phase transition of the polymorphs is critical for controlled synthesis and property modulation of functional materials. Upconversion emissions from an efficient hexagonal sodium rare-earth (RE) fluoride compound, ß-NaREF4, which is generally obtained from the phase transition of the cubic (α-) phase counterpart, are attractive for photonic applications. However, the investigation of the α → ß phase transition of NaREF4 and its effect on the composition and architecture is still preliminary. Herein, we investigated the phase transition with two kinds of α-NaREF4 particles. Instead of a uniform composition, the ß-NaREF4 microcrystals exhibited regionally distributed RE3+ ions, in which the RE3+ with a smaller ionic radius (smaller RE3+) sandwiched the RE3+ with a larger ionic radius (larger RE3+). We unravel that the α-NaREF4 particles transformed to ß-NaREF4 nuclei with no controversial dissolution, and the α → ß phase transition toward NaREF4 microcrystals included nucleation and growth steps. The component-dependent phase transition is corroborated with RE3+ ions from Ho3+ to Lu3+ and multiple sandwiched microcrystals were obtained, in which up to five kinds of RE components were distributed regionally. Moreover, with rational integration of luminescent RE3+ ions, a single particle with multiplexed upconversion emissions in wavelength and lifetime domains is demonstrated, which provides a unique platform for optical multiplexing applications.

4.
Adv Mater ; 35(3): e2208078, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36398427

ABSTRACT

While quasi-two-dimensional (quasi-2D) perovskites have emerged as promising semiconductors for light-emitting diodes (LEDs), the broad-width distribution of quantum wells hinders their efficient energy transfer and electroluminescence performance in blue emission. In particular, the underlying mechanism is closely related to the crystallization kinetics and has yet to be understood. Here for the first time, the influence of bifunctional zwitterions with different coordination affinity on the crystallization kinetics of quasi-2D perovskites is systematically investigated. The zwitterions can coordinate with Pb2+ and also act as co-spacer organic species in quasi-2D perovskites, which collectively inhibit the aggregation of colloidal precursors and shorten the distance of quantum wells. Consequently, restricted nucleation of high-n phases and promoted growth of low-n phases are achieved with moderately coordinated zwitterions, leading to the final film with a more concentrated n distribution and improved energy transfer efficiency. It thus enables high-efficiency blue LEDs with a recorded external quantum efficiency of 15.6% at 490 nm, and the operation stability has also been prolonged to 55.3 min. These results provide useful directions for tuning the crystallization kinetics of quasi-2D perovskites, which is expected to lead to high-performance perovskite LEDs.

5.
Adv Sci (Weinh) ; 9(18): e2201354, 2022 06.
Article in English | MEDLINE | ID: mdl-35466546

ABSTRACT

Lead-based halide perovskite nanomaterials with excellent optical properties have aroused great attention in the fields of solar cells, light-emitting diodes, lasing, X-ray imaging, etc. However, the toxicity of lead prompts researchers to develop alternatives to cut down the usage of lead. Herein, all-inorganic manganese-based perovskite derivatives, CsMnCl3 nanocrystals (NCs), with uniform size and morphology have been synthesized successfully via a modified hot-injection method. These NCs have a direct bandgap of 4.08 eV and a broadband emission centered at 660 nm. Through introducing modicum lead (1%) into the CsMnCl3 NCs, the photoluminescence intensity greatly improves, and the quantum yield (PLQY) increases from 0.7% to 21%. Furthermore, the CsMnCl3 :1%Pb NCs feature high-efficiency of X-ray absorption and radioluminescence, which make these NCs promising candidates for X-ray imaging.


Subject(s)
Manganese , Nanoparticles , X-Rays
6.
Nat Nanotechnol ; 17(5): 524-530, 2022 05.
Article in English | MEDLINE | ID: mdl-35469009

ABSTRACT

A photon avalanche (PA) effect that occurs in lanthanide-doped solids gives rise to a giant nonlinear response in the luminescence intensity to the excitation light intensity. As a result, much weaker lasers are needed to evoke such PAs than for other nonlinear optical processes. Photon avalanches are mostly restricted to bulk materials and conventionally rely on sophisticated excitation schemes, specific for each individual system. Here we show a universal strategy, based on a migrating photon avalanche (MPA) mechanism, to generate huge optical nonlinearities from various lanthanide emitters located in multilayer core/shell nanostructrues. The core of the MPA nanoparticle, composed of Yb3+ and Pr3+ ions, activates avalanche looping cycles, where PAs are synchronously achieved for both Yb3+ and Pr3+ ions under 852 nm laser excitation. These nanocrystals exhibit a 26th-order nonlinearity and a clear pumping threshold of 60 kW cm-2. In addition, we demonstrate that the avalanching Yb3+ ions can migrate their optical nonlinear response to other emitters (for example, Ho3+ and Tm3+) located in the outer shell layer, resulting in an even higher-order nonlinearity (up to the 46th for Tm3+) due to further cascading multiplicative effects. Our strategy therefore provides a facile route to achieve giant optical nonlinearity in different emitters. Finally, we also demonstrate applicability of MPA emitters to bioimaging, achieving a lateral resolution of ~62 nm using one low-power 852 nm continuous-wave laser beam.


Subject(s)
Lanthanoid Series Elements , Ions , Lanthanoid Series Elements/chemistry , Lasers , Light , Luminescence
7.
J Am Chem Soc ; 143(49): 20546-20561, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34865480

ABSTRACT

Upconversion emissions from lanthanide-doped nanocrystals have sparked extensive research interests in nanophotonics, biomedicine, photovoltaics, photocatalysis, etc. Rational modulation of upconversion emissions is highly desirable to meet the requirements of specific applications. Among the diverse developed methods, local structure engineering is fundamentally feasible, through which the upconversion emission intensity, selectivity, wavelength shift, and lifetime can be tuned effectively. The underlying mechanism of the local-structure-dependent upconversion emissions lies in the degree of parity hybridization and energy level splitting of lanthanide ions as well as the interionic energy transfer efficiency. Over the past few years, there has been significant progress in local-structure-engineered upconversion emissions. In this Perspective, we first introduce the principles of upconversion emissions and typical characterization methods for local structure. Subsequently, we summarize recent achievements in tuning of upconversion emissions through local structure engineering, including host composition adjustment, external field regulation, and interfacial strain management. Finally, we propose a few perspectives that should tackle the current bottlenecks. This Perspective is expected to deepen the understanding of local-structure-dependent upconversion emissions and arouse adequate attention to the engineering of local structure for desired properties of inorganic nanocrystals.

8.
J Phys Chem Lett ; 12(46): 11288-11294, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34767371

ABSTRACT

Polarized emission, an inherent characteristic that correlated with structure and morphology, is very sensitive to orientation. For the upconversion (UC) emission of lanthanides, the mechanism of polarization is rarely discussed, and the highly polarized UC emissions are poorly developed. Herein, with the benefit of the strong anisotropic crystal field, well-resolved emissions from lanthanide-doped LiYF4 crystals were studied, and highly polarized UC emissions from Er3+ and Ho3+ were investigated. With multiple sub-energy level transitions, the UC emissions are classified into two sets, with transition dipoles being either parallel or perpendicular to the c-axis of the LiYF4 crystal. An optical three-dimensional orientation sensor was further investigated, in which the in-plane angle is referenced from the orientation of the transition dipoles. In contrast, the out-of-plane angle can be deduced from the change in the degree of polarization. This research deepens our understanding of the polarized photoluminescence, and it opens up an avenue toward unique UC orientation sensors.

9.
Small ; 17(41): e2103140, 2021 10.
Article in English | MEDLINE | ID: mdl-34510739

ABSTRACT

The miniaturization of lasers holds promise in ultradense data storage and biosensing, but greater pump power is required to reach the lasing thresholds to overcome increased optical losses with reduced resonant cavity sizes. Here, the whispering galley mode (WGM) of Yb3+ /Tm3+ doped upconversion nanoparticles (UCNPs) coupled with microcavities (≈5 µm) is used to achieve ultralow threshold upconverted lasing at 800 nm with excitation fluences as low as 4 W cm-2 . The continuous-wave (CW) upconverted lasing, with a Q factor on the order of 103 , can remain stable for more than 6 h. In addition, ultralow threshold upconverted microlasers spanning the full visible spectrum from Yb3+ /Er3+ , Yb3+ /Ho3+ , and Yb3+ /Tm3+ doped UCNPs are obtained with the same WGM cavity design. These upconverted microlasers working under low power CW 980 nm laser will enable promising applications in biosensing and imaging.


Subject(s)
Lanthanoid Series Elements , Nanoparticles , Lasers
10.
ACS Omega ; 6(23): 15236-15245, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34151102

ABSTRACT

Influenza A virus (IAV) poses a significant threat to human health, which calls for the development of efficient detection methods. The present study constructed a fluorescence resonance energy transfer (FRET) system based on novel fluorescent probes and graphene oxide (GO) for detecting H5N1 IAV hemagglutinin (HA). Here, we synthesized small (sub-20 nm) sandwich-structured upconversion nanoparticles (UCNPs) (SWUCNPs for short) with a high energy transfer efficiency, which allows for controlling the emitter in a thin shell. The π-π stacking interaction between the aptamer and GO shortens the distance between the fluorescent probe and the receptor, thereby realizing fluorescence resonance energy transfer (FRET). When HA is present, the aptamer enables changes in their conformations and move away from GO surface. Fluorescence signals display a linear relationship between HA quantitation in the range of 0.1-15 ng mL-1 and a limit of detection (LOD) of 60.9 pg mL-1. The aptasensor was also applicable in human serum samples with a linear range from 0.2 to 12 ng mL-1 and a limit of detection of 114.7 pg mL-1. This strategy suggested the promising prospect of the aptasensor in clinical applications because of the excellent sensing performance and sensitivity. This strategy may be promising for vitro diagnostics and provides new insights into the functioning of the SWUCNPs system.

11.
Adv Sci (Weinh) ; 8(6): 2003325, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747733

ABSTRACT

At the organic-inorganic interface of nanocrystals, electron-phonon coupling plays an important but intricate role in determining the diverse properties of nanomaterials. Here, it is reported that highly doping of Yb3+ ions within the nanocrystal host can form an energy-migration network. The networking state Yb3+ shows both distinct Stark splitting peak ratios and lifetime dynamics, which allows quantitative investigations of quenching and thermal activation of luminescence, as the high-dimensional spectroscopy signatures can be correlated to the attaching and de-attaching status of surface molecules. By in-situ surface characterizations, it is proved that the Yb-O coordination associated with coordinated water molecules has significantly contributed to this reversible effect. Moreover, using this approach, the prime quencher -OH can be switched to -CH in the wet-chemistry annealing process, resulting in the electron-phonon coupling probability change. This study provides the molecular level insights and dynamics of the surface dark layer of luminescent nanocrystals.

12.
J Am Chem Soc ; 143(5): 2250-2255, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33517656

ABSTRACT

Metal fluoride nanocrystals are widely used in biomedical studies owing to their unique physicochemical properties. The release of metal ions and fluorides from nanocrystals is intrinsic due to the solubility equilibrium. It used to be considered as a drawback because it is related to the decomposition and defunction of metal fluoride nanocrystals. Many strategies have been developed to stabilize the nanocrystals, and the equilibrium concentrations of fluoride are often <1 mM. Here we make good use of this minimum amount of fluoride and unveil that metal fluoride nanocrystals could effectively induce desilylation cleavage chemistry, enabling controlled release of fluorophores and drug molecules in test tubes, living cells, and tumor-bearing mice. Biocompatible PEG (polyethylene glycol)-coated CaF2 nanocrystals have been prepared to assay the efficiency of desilylation-induced controlled release of functional molecules. We apply the strategy to a prodrug activation of monomethyl auristatin E (MMAE), showing a remarkable anticancer effect, while side effects are almost negligible. In conclusion, this desilylation-induced cleavage chemistry avails the drawback on empowering metal fluoride nanocrystals with a new function of perturbing or activating for further biological applications.


Subject(s)
Fluorides/chemistry , Metals/chemistry , Nanoparticles/chemistry , Organosilicon Compounds/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Carriers/chemistry , Humans , Oligopeptides/chemistry , Oligopeptides/pharmacology , Polyethylene Glycols/chemistry , Solubility
13.
Angew Chem Int Ed Engl ; 60(3): 1212-1219, 2021 01 18.
Article in English | MEDLINE | ID: mdl-32978789

ABSTRACT

RuII compounds are widely used in catalysis, photocatalysis, and medical applications. They are usually obtained in a reductive environment as molecular O2 can oxidize RuII to RuIII and RuIV . Here we report the design, identification and evolution of an air-stable surface [bipy-RuII (CO)2 Cl2 ] site that is covalently mounted onto a polyphenylene framework. Such a RuII site was obtained by reduction of [bipy-RuIII Cl4 ]- with simultaneous ligand exchange from Cl- to CO. This structural evolution was witnessed by a combination of in situ X-ray and infrared spectroscopy studies. The [bipy-RuII (CO)2 Cl2 ] site enables oxidation of CO with a turnover frequency of 0.73×10-2  s-1 at 462 K, while the RuIII site is completely inert. This work contributes to the study of structure-activity relationship by demonstrating a practical control over both geometric and electronic structures of single-site catalysts at molecular level.

14.
Nat Commun ; 11(1): 4008, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32782245

ABSTRACT

Supported atomic metal sites have discrete molecular orbitals. Precise control over the energies of these sites is key to achieving novel reaction pathways with superior selectivity. Here, we achieve selective oxygen (O2) activation by utilising a framework of cerium (Ce) cations to reduce the energy of 3d orbitals of isolated copper (Cu) sites. Operando X-ray absorption spectroscopy, electron paramagnetic resonance and density-functional theory simulations are used to demonstrate that a [Cu(I)O2]3- site selectively adsorbs molecular O2, forming a rarely reported electrophilic η2-O2 species at 298 K. Assisted by neighbouring Ce(III) cations, η2-O2 is finally reduced to two O2-, that create two Cu-O-Ce oxo-bridges at 453 K. The isolated Cu(I)/(II) sites are ten times more active in CO oxidation than CuO clusters, showing a turnover frequency of 0.028 ± 0.003 s-1 at 373 K and 0.01 bar PCO. The unique electronic structure of [Cu(I)O2]3- site suggests its potential in selective oxidation.

15.
J Am Chem Soc ; 142(31): 13362-13371, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32658462

ABSTRACT

Apart from active metals, supports also contribute significantly to the catalytic performance of supported metal catalysts. On account of the formed strain and defects, the heterostructured surface of the support may play a crucial role to activate the reactant molecules, while it is usually neglected. In this work, the Pt/γ-Mo2N catalyst was prepared via a facile solution method. This Pt/γ-Mo2N catalyst showed excellent activity and stability for catalyzing the water-gas shift (WGS) reaction. The reaction rates at 240 °C were 16.5 molCO molPt-1s-1 in product-free gas and 5.36 molCO molPt-1 s-1 in full reformate gas, which were almost 20 times that of the catalysts reported. It is found that the molybdenum species in the surface of the Pt/γ-Mo2N catalyst is molybdenum oxide as MoO3. This surface MoO3 is very easily reduced even at room temperature, and it transformed into highly distorted MoOx (2 < x < 3) in the WGS reaction. The MoOx on the catalyst surface greatly enhanced the capability of generating active oxygen vacancies to dissociate H2O molecules, which induced unexpectedly superior catalytic performance. Therefore, the intrinsically active surface in the Pt/γ-Mo2N catalyst for the WGS reaction was molybdenum oxide as MoOx (2 < x < 3).

16.
J Phys Chem Lett ; 11(9): 3515-3520, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32293899

ABSTRACT

Tremendous effort has been devoted to tailoring structure-correlated properties, especially for the luminescence of lanthanide nanocrystals (NCs). High pressure has been demonstrated as a decent way to tune the performance of lanthanide NCs; however, little attention has been paid to the local structure evolution accompanied by extreme compression and its effect on luminescence. Here, we tailor the local structure around lanthanide ions with pressure in ß-NaGdF4 NCs, in which Eu3+ ions were doped as optical probes for local structure for the sensitive electric dipole transition. As the pressure increases, the intensity ratio of the 5D0 → 7F2 to 5D0 → 7F1 transition decreases monotonically from 2.04 to 0.81, implying a higher local symmetry around Eu3+ ions from compression. In situ X-ray diffraction demonstrates that the sample maintains the hexagonal structure up to 33.5 GPa, and density functional theory calculations reveal the tendency of the local structure to vary under high pressure.

17.
J Am Chem Soc ; 142(8): 3939-3946, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31968933

ABSTRACT

Metal-organic frameworks (MOFs) have shown great potential as nanophotosensitizers (nPSs) for photodynamic therapy (PDT). The use of such MOFs in PDT, however, is limited by the shallow depth of tissue penetration of short-wavelength light and the oxygen-dependent mechanism that renders it inadequate for hypoxic tumors. Here, to combat such limitations, we rationally designed core-shell upconversion nanoparticle@porphyrinic MOFs (UCSs) for combinational therapy against hypoxic tumors. The UCSs were synthesized in high yield through the conditional surface engineering of UCNPs and subsequent seed-mediated growth strategy. The heterostructure allows efficient energy transfer from the UCNP core to the MOF shell, which enables the near-infrared (NIR) light-triggered production of cytotoxic reactive oxygen species. A hypoxia-activated prodrug tirapazamine (TPZ) was encapsulated in nanopores of the MOF shell of the heterostructures to yield the final construct TPZ/UCSs. We demonstrated that TPZ/UCSs represent a promising system for achieving improved cancer treatment in vitro and in vivo via the combination of NIR light-induced PDT and hypoxia-activated chemotherapy. Furthermore, the integration of the nanoplatform with antiprogrammed death-ligand 1 (α-PD-L1) treatment promotes the abscopal effect to completely inhibit the growth of untreated distant tumors by generating specific tumor infiltration of cytotoxic T cells. Collectively, this work highlights a robust nanoplatform for combining NIR light-triggered PDT and hypoxia-activated chemotherapy with immunotherapy to combat the current limitations of tumor treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Hypoxia , Immunotherapy , Infrared Rays , Metal-Organic Frameworks/chemistry , Neoplasms/therapy , Animals , Combined Modality Therapy , Humans , Mice , Neoplasms/pathology , Photochemotherapy , Photosensitizing Agents/therapeutic use
18.
Front Chem ; 8: 619377, 2020.
Article in English | MEDLINE | ID: mdl-33520938

ABSTRACT

Super-resolution microscopy offers a non-invasive and real-time tool for probing the subcellular structures and activities on nanometer precision. Exploring adequate luminescent probes is a great concern for acquiring higher-resolution image. Benefiting from the atomic-like transitions among real energy levels, lanthanide-doped upconversion nanoparticles are featured by unique optical properties including excellent photostability, large anti-Stokes shifts, multicolor narrowband emissions, tunable emission lifetimes, etc. The past few years have witnessed the development of upconversion nanoparticles as probes for super-resolution imaging studies. To date, the optimal resolution reached 28 nm (λ/36) for single nanoparticles and 82 nm (λ/12) for cytoskeleton structures with upconversion nanoparticles. Compared with conventional probes such as organic dyes and quantum dots, upconversion nanoparticle-related super-resolution microscopy is still in the preliminary stage, and both opportunities and challenges exist. In this perspective article, we summarized the recent advances of upconversion nanoparticles for super-resolution microscopy and projected the future directions of this emerging field. This perspective article should be enlightening for designing efficient upconversion nanoprobes for super-resolution imaging and promote the development of upconversion nanoprobes for cell biology applications.

19.
J Am Chem Soc ; 141(11): 4613-4623, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30807152

ABSTRACT

The crucial role of the metal-oxide interface in the catalysts of the water-gas shift (WGS) reaction has been recognized, while the precise illustration of the intrinsic reaction at the interfacial site has scarcely been presented. Here, two kinds of gold-ceria catalysts with totally distinct gold species, <2 nm clusters and 3 to 4 nm particles, were synthesized as catalysts for the WGS reaction. We found that the gold cluster catalyst exhibited a superiority in reactivity compared to gold nanoparticles. With the aid of comprehensive in situ characterization techniques, the bridged -OH groups that formed on the surface oxygen vacancies of the ceria support are directly determined to be the sole active configuration among various surface hydroxyls in the gold-ceria catalysts. The isotopic tracing results further proved that the reaction between bridged surface -OH groups and CO molecules adsorbed on interfacial Au atoms contributes dominantly to the WGS reactivity. Thus, the abundant interfacial sites in gold clusters on the ceria surface induced superior reactivity compared to that of supported gold nanoparticles in catalyzing the WGS reaction. On the basis of direct and solid experimental evidence, we have obtained a very clear image of the surface reaction for the WGS reaction catalyzed by the gold-ceria catalyst.

20.
Science ; 363(6424): 265-270, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30655439

ABSTRACT

The components with soft nature in the metal halide perovskite absorber usually generate lead (Pb)0 and iodine (I)0 defects during device fabrication and operation. These defects serve as not only recombination centers to deteriorate device efficiency but also degradation initiators to hamper device lifetimes. We show that the europium ion pair Eu3+-Eu2+ acts as the "redox shuttle" that selectively oxidized Pb0 and reduced I0 defects simultaneously in a cyclical transition. The resultant device achieves a power conversion efficiency (PCE) of 21.52% (certified 20.52%) with substantially improved long-term durability. The devices retained 92% and 89% of the peak PCE under 1-sun continuous illumination or heating at 85°C for 1500 hours and 91% of the original stable PCE after maximum power point tracking for 500 hours, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...