Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 37(5): e22927, 2023 05.
Article in English | MEDLINE | ID: mdl-37086087

ABSTRACT

miR-184 is one of the most abundant miRNAs expressed in the lens and corneal tissue. Mutations in the seed region of miR-184 are responsible for inherited anterior segment dysgenesis. Animal models recapitulating miR-184-related anterior segment dysgenesis are still lacking, and the molecular basis of ocular abnormalities caused by miR-184 dysfunction has not been well elucidated in vivo. In the present study, we constructed a miR-184-/- zebrafish line by destroying both two dre-mir-184 paralogs with CRISPR-Cas9 technology. Although there were no gross developmental defects, the miR-184-/- zebrafish displayed microphthalmia and cataract phenotypes. Cytoskeletal abnormalities, aggregation of γ-crystallin, and lens fibrosis were induced in miR-184-/- lenses. However, no obvious corneal abnormalities were observed in miR-184-/- zebrafish. Instead of apoptosis, deficiency of miR-184 led to aberrant cell proliferation and a robust increase in p21 levels in zebrafish eyes. Inhibition of p21 by UC2288 compromised the elevation of lens fibrosis markers in miR-184-/- lenses. RNA-seq demonstrated that levels of four transcriptional factors HSF4, Sox9a, CTCF, and Smad6a, all of which could suppress p21 expression, were reduced in miR-184-/- eyes. The predicted zebrafish miR-184 direct target genes (e.g., atp1a3a and nck2a) were identified and verified in miR-184-/- eye tissues. The miR-184-/- zebrafish is the first animal model mimicking miR-184-related anterior segment dysgenesis and could broaden our understanding of the roles of miR-184 in eye development.


Subject(s)
Cataract , Lens, Crystalline , MicroRNAs , Animals , Cataract/genetics , Cataract/metabolism , Lens, Crystalline/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Transcription Factors/metabolism , Zebrafish/genetics
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166645, 2023 04.
Article in English | MEDLINE | ID: mdl-36682603

ABSTRACT

Retinal photoreceptors execute phototransduction functions and require an efficient system for the transport of materials (e.g. proteins and lipids) from inner segments to outer segments. Cytoplasmic dynein 1 is a minus-end-directed microtubule motor and participates in cargo transport in the cytoplasm. However, the roles of dynein 1 motor in photoreceptor cargo transport and retinal development are still ambiguous. In our present study, the light intermediate chain protein DLIC1 (encoded by dync1li1), links activating adaptors to bind diverse cargos in the dynein 1 motor, was depleted using CRISPR-Cas9 technology in zebrafish. The dync1li1-/- zebrafish displayed progressive degeneration of retinal cone photoreceptors, especially blue cones. The retinal rods were not affected in dync1li1-/- zebrafish. Knockout of DLIC1 resulted in abnormal expression and localization of cone opsins in dync1li1-/- retinas. TUNEL staining suggested that apoptosis was induced after aberrant accumulation of cone opsins in photoreceptors of dync1li1-/- zebrafish. Instead of Rab11 transport, Rab8 transport was disturbed in dync1li1-/- retinas. Our data demonstrate that DLIC1 is required for function maintenance and survival of cone photoreceptors, and hint at an essential role of the cytoplasmic dynein 1 motor in photoreceptor cargo transport.


Subject(s)
Cone Opsins , Cytoplasmic Dyneins , Retinal Cone Photoreceptor Cells , Animals , Cone Opsins/metabolism , Cytoplasmic Dyneins/genetics , Cytoplasmic Dyneins/metabolism , Dyneins/genetics , Dyneins/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Zebrafish/genetics , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...